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Let the initial asset balances be x0 and y0. A swap either swaps an amount
xin for the amount yout. Or vice versa swaps an amount yin for the amount xout.

Each swap has a fee γ. Let f := 1− γ. Given exact xin, the fee means that
the actual swap is on fxin (similarly for exact yin). Given exact amount out, the
fee means that the swap requires an input of amount in sans fees

f .

Given exact xout, calculate yin Here

yin = 1
f

(
−y0 + −(x0 − xout − a)λsc−

√
r2(1− λs2)− (x0 − xout − a)2/λ2

1− λs2 + b

)

And

dyin
dxout

= 1
f(1− λs2)

(
λsc− x0 − xout − a

λ2
√
r2(1− λs2)− (x0 − xout − a)2/λ2

)

This is the spotPriceAfterSwap for Balancer SOR.
The square root in the denominator can be calculated with good precision

using the methods used in the contract calculation. This should help with overall
numerical imprecision. This said, there may be other sources of imprecision (e.g.,
from a and in multiplications and divisions).

And the derivativeSpotPriceAfterSwap is the derivative of this as a
function of xout, i.e.,

d2yin
dx2

out
= 1
f(1− λs2)

( 1
λ2
√
r2(1− λs2)− (x0 − xout − a)2/λ2

+ (x0 − xout − a)2

λ4(r2(1− λs2)− (x0 − xout − a)2/λ2)3/2

)
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Given exact yout, calculate xin This is parallel to the previous case, we just
need to transpose yo → x0, x0 → y0, s→ c, c→ s, a→ b, b→ a. Then

dxin
dyout

= 1
f(1− λc2)

(
λsc− y0 − yout − b

λ2
√
r2(1− λc2)− (y0 − yout − b)2/λ2

)

This is the spotPriceAfterSwap for Balancer SOR.
And the derivativeSpotPriceAfterSwap is

d2xin
dy2

out
= 1
f(1− λc2)

( 1
λ2
√
r2(1− λc2)− (y0 − yout − b)2/λ2

+ (y0 − yout − b)2

λ4(r2(1− λc2)− (y0 − yout − b)2/λ2)3/2

)
Given exact xin, calculate yout Here

yout = y0−
(
−(x0 + fxin − a)λsc−

√
r2(1− λs2)− (x0 + fxin − a)2/λ2

1− λs2 + b

)

And

dyout
dxin

= f

1− λs2

(
λsc− x0 + fxin − a

λ2
√
r2(1− λs2)− (x0 + fxin − a)2/λ2

)

The spotPriceAfterSwap for Balancer SOR is then 1
this .

The derivativeSpotPriceAfterSwap is the derivative of spotPriceAfterSwap

as a function of xin, namely

(1− λs2) ·
1

λ2
√
r2(1−λs2)−(x0+fxin−a)2/λ2 + (x0+fxin−a)2

λ4(r2(1−λs2)−(x0+fxin−a)2/λ2)3/2(
λsc− x0+fxin−a

λ2
√
r2(1−λs2)−(x0+fxin−a)2/λ2

)2

Given exact yin, calculate xout This is parallel to the previous case, we just
need to transpose yo → x0, x0 → y0, s→ c, c→ s, a→ b, b→ a. Then

dxout
dyin

= f

1− λc2

(
λsc− y0 + fyin − b

λ2
√
r2(1− λc2)− (y0 + fyin − b)2/λ2

)

The spotPriceAfterSwap for Balancer SOR is then 1
this .
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The derivativeSpotPriceAfterSwap is

(1− λc2)
1

λ2
√
r2(1−λc2)−(y0+fyin−b)2/λ2 + (y0+fyin−b)2

λ4(r2(1−λc2)−(y0+fyin−b)2/λ2)3/2(
λsc− y0+fyin−b

λ2
√
r2(1−λc2)−(y0+fyin−b)2/λ2

)2

Normalized Liquidity as a function of yin Remark on notation: In this
section, we only consider the variant of the operation where yin is given and xout

is computed. Thus, xout = xout(yin) should always be considered as a function
of yin. We write short x′out and x′′out for the first and second derivative of xout

as a function of yin.
The normalizedLiquidity is defined as

1
2 ·

1
limyin→0

d
dyin

yin
xout

.

Observe that the fraction on the right is the effective price of a trade of non-
infinitesimal size. The limit is necessary because yin

xout
is ill-defined at 0.1

normalizedLiquidity is equal to

1
1− λc2 ·

R
(
λscλ2R− (y0 − b)

)2
λ2R2 + (y0 − b)2

where R :=
√
r2(1− λc2)− (y0 − b)2/λ2.

Proof. We have by the quotient rule

d

dyin

yin
xout

= xout − yinx
′
out

x2
out

.

Note that this is indeterminate for yin = 0. We compute the limit yin → 0 via
1The fraction is ill-defined at yin = 0 because here also xout = 0 and the fraction would

be 0/0. Instead of the above limit, we could also consider the continuous extension of yin
xout

to yin = 0, which is realized at px = dyin
dxout

(0). However, we do not know a simple closed
form (without case distinction) for this continuous extension, and so we cannot compute the
derivative of that extension directly. This is different than for, e.g., the 2-CLP, where such a
closed-form expression is easy to find.
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two applications of L’Hospital’s rule: in the limit yin → 0 we have

xout − yinx
′
out

x2
out

= x′out − x′out − yinx
′′
out

2xoutx′out

= −yinx
′′
out

2xoutx′out

= −x′′out − yinx
′′′
out

2(x′2out + xoutx′′out)

= −x
′′
out

2x′2out
.

The first and the third equality are applications of L’Hospital’s rule and the last
one follows because we consider the limit yin → 0 and all involved functions are
well-defined and continuous.

Write short

R(yin) :=
√
r2(1− λc2)− (y0 + fyin − b)2/λ2

and note that R(0) = R.
We know from above that

x′out = dxout
dyin

= f

1− λc2

(
λsc− y0 + fyin − b

λ2
√
r2(1− λc2)− (y0 + fyin − b)2/λ2

)

= f

1− λc2

(
λsc− y0 + fyin − b

λ2R(yin)

)
= f

1− λc2 ·
λscλ2R(yin)− (y0 + fyin − b)

λ2R(yin)

It remains to calculate x′′out = d2xout
dy2

in
, which we have not yet computed; the

calculation is similar to that of d2xin
dy2

out
from above, though. We have

x′′out = − f

1− λc2 ·
fλ2R(yin)− (y0 + fyin − b)λ2

(
d
dyin

R(yin)
)

λ4R(yin)2 .

It is easy to calculate that

d

dyin
R(yin) = −f(y0 + fyin − b)

λ2R(yin)
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so that

x′′out = − f2

1− λc2 ·
(

1
λ2R(yin) + (y0 + fyin − b)2

λ4R(yin)3

)

= − f2

1− λc2 ·
λ2R(yin)2 + (y0 + fyin − b)2

λ4R(yin)3 .

We now receive

normalizedLiquidity = 1
2 ·

1
−x′′

out
2x′2

out
(0)

= x′2out
−x′′out

(0)

=

(
f

1−λc2 · λscλ
2R−(y0−b)
λ2R

)2

f2

1−λc2 · λ
2R2+(y0−b)2

λ4R3

= 1
1− λc2 ·

R
(
λscλ2R− (y0 − b)

)2
λ2R2 + (y0 − b)2

Normalized Liquidity Given xin In the symmetric case where y is the token
paid out and x is the token paid in, we need to replace x and y as well as a and
b and s and c. Thus normalizedLiquidity is equal to

1
1− λs2 ·

R
(
λscλ2R− (x0 − a)

)2
λ2R2 + (x0 − a)2

where R :=
√
r2(1− λs2)− (x0 − a)2/λ2. Note that the definition of R is

different from the definition of R in the previous section.

Old, Now Unused Content (Maybe Outdated)

Slippage and Normalized Liquidity Given xout Assume that x is the token
paid out and y is the token paid in.

Remark on notation: In this section, we only consider the variant of the
operation where xout is an independent variable and yin is computed. Thus,
yin = yin(xout) should always be considered as a function of xout. We write
short y′in and y′′in for the first and second derivative of yin as a function of xout.

Consider some reserve state (x, y). Let p := y′in(0) be the marginal price
including fees at (x, y), where y′in(0) is y′in evaluated at xout = 0. The slippage
of a trade of size xout > 0 is defined as the quotient of the average price of the
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trade and the marginal price at (x, y), minus 1, i.e.,

S :=
yin
xout

p
− 1.

The normalizedLiquidity is defined as

1
/

lim
xout→0

dS

dxout
,

where the limit is necessary because S is ill-defined at 0.2

normalizedLiquidity is equal to3

2
λsc− x0−a

λ2R
1

λ2R + (x0−a)2

λ4R3

where R :=
√
r2(1− λs2)− (x0 − a)2/λ2.

Proof. Since p = y′in(0) is independent of xout, we have

lim
yin→0

dS

dyin
= 1
y′in(0) · lim

xout→0

d

dxout

yin
xout

.

We first compute the latter derivative. We have

d

dxout

yin
xout

= y′inxout − yin
x2

out
.

Note that this is indeterminate for xout = 0. We compute the limit xout → 0
via L’Hospital’s rule: we have

lim
xout→0

y′inxout − yin
x2

out
= lim

xout→0

y′′inxout + y′in − y′in
2xout

= lim
xout→0

1
2y
′′
in

= 1
2y
′′
in(0).

2S is ill-defined at xout = 0 because then also yin = 0 and S contains the expression 0/0.
Instead of the above limit, we could also consider the continuous extension of S to xout = 0,
which is realized at S(0) = 0 (it is easy to see that S → 0 for xout → 0). However, we do not
know a simple closed form (without case distinction) for this continuous extension of S, and so
we cannot compute the derivative of that extension directly. This is different than for, e.g., the
2-CLP, where such a closed-form expression is easy to find.

3The formula could of course be simplified by canceling out a factor λ2R. But I’m not sure
if it will make things simpler overall.
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where the last equality is because y′′in is well-defined and continuous at 0. We
now know that

lim
xout→0

dS

dxout
= y′′in(0)

2y′in(0) .

We know from above that

y′in = dyin
dxout

= 1
f(1− λs2)

(
λsc− x0 − xout − a

λ2
√
r2(1− λs2)− (x0 − xout − a)2/λ2

)

y′′in = d2yin
dx2

out
= 1
f(1− λs2)

( 1
λ2
√
r2(1− λs2)− (x0 − xout − a)2/λ2

+ (x0 − xout − a)2

λ4(r2(1− λs2)− (x0 − xout − a)2/λ2)3/2

)

and therefore, by evaluating these at xout = 0, we receive

y′in(0) = 1
f(1− λs2)

(
λsc− x0 − a

λ2R

)
y′′in(0) = 1

f(1− λs2)

( 1
λ2R

+ (x0 − a)2

λ4R3

)
.

The statement of the theorem now follows by plugging y′in(0) and y′′in(0) into
the formula above and taking the reciprocal.

Slippage and Normalized Liquidity Given yout In the symmetric case where
y is the token paid out and x is the token paid in, we need to replace x and y
as well as a and b and s and c. Thus normalizedLiquidity is equal to

2
λsc− y0−b

λ2R
1

λ2R + (y0−b)2

λ4R3

where R :=
√
r2(1− λc2)− (y0 − b)2/λ2. Note that the definition of R is

different from the definition of R in the previous section.
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