
Concentrated Liquidity Pools with 2 or 3 Assets via
Constant Products with Virtual Reserves

Ariah Klages-Mundt∗ Steffen Schuldenzucker†

August 21, 2022

Abstract

We describe a construction for concentrated liquidity pools with 2 or 3 assets
(short 2-CLP and 3-CLP). The pools are constructed as constant-product market
makers with virtual reserves. The possible pricing range of these AMMs is restricted
to an interval; this is done by adding carefully chosen offsets to the “real” reserve
amounts. Concentrated liquidity improves capital efficiency because the AMM only
has to hold capital for prices that are actually expected to occur. While the 2-asset
variant is known as a simplified version of the mechanism used in Uniswap v3, our
3-asset construction is new. Our method further generalizes to any number of assets.

1 Preliminaries

We consider CFMMs f(x) in reserve space with any number of assets (x1, ... , xn). We
single out xn as the numéraire, i.e., prices will be denoted w.r.t. xn. The price of asset i

is
pi := −dxn

dxi
,

where the derivative is taken along the curve where f(x) stays constant. The price of
i measures, in a marginal sense, by how much the numéraire xn has to increase if xi

decreases by an (infinitesimal) unit and all other reserves stay the same.1 Note that
pn = 1. We also write (x, y) or (x, y, z) instead of the variables (x1, ... , xn) and px and
py accordingly; in this context, we also write t := (x, y) or t := (x, y, z) for the whole
reserve state.

∗Researcher at Superluminal Labs, a software development company working in the Gyroscope
ecosystem; in a separate capacity, a PhD student at Cornell University. ariah@gyro.finance

†Researcher at Superluminal Labs. steffen@gyro.finance
1See also Klages-Mundt and Schuldenzucker (2021) for a more in-depth discussion.

1

mailto:ariah@gyro.finance
mailto:steffen@gyro.finance

2 2-asset variant

The 2-asset constant-product market maker with virtual reserves was previously described
in the Uniswap v3 whitepaper (Adams et al., 2021). Even though we are not the first to
write down this mechanism, it may be instructive to perform the construction from first
principles. In contrast to Uniswap, the 2-CLP described in this document only specifies
the mechanism with one pair of price bounds; in Uniswap, this would be called a single
position. Uniswap supports a large number of (user-defined) positions and performs
additional work to ensure this structure can be manipulated efficiently. Some other
features that have been present since Uniswap v2 are also not described here; these
include flash swaps, sync and skim functions.

Given are price bounds [α, β] such that α < β.2 We want to find a and b such that
the following holds. Consider the curve of points (x, y) such that

(x + a)(y + b) = L2, (1)

where L is an arbitrary constant. Then a and b should be chosen such that, if x = 0,
then px = β and if y = 0, then px = α. In particular, px ∈ [α, β] for all points (x, y) and
these bounds are tight. In general, a and b can be arbitrary expressions; however, we
will see that we can choose them as functions of only L (more specifically, as constant
multiples of L). We will see that L is a useful liquidity invariant. The mechanism will
track L, in addition to other constants.

2.1 Choosing Virtual Reserves

The following lemma describes how the offsets a and b need to be chosen. In the following,
for the sake of clarity, we always write x′ and y′ in any context that is applied to the
virtual reserves and we write x and y for the real reserves. Concretely, x′ = x + a and
y′ = y + b.

Lemma 1. The above conditions are satisfied iff

a = L/
√

β

b = L ·
√

α.

Furthermore,

x = 0 ⇔ y = y+ := L · (
√

β −
√

α)

y = 0 ⇔ x = x+ := L · (1/
√

α − 1/
√

β)
2More standard notation would be to call these bounds [p, q], but we will use these letters in a different

context below. To avoid any confusion, we rename the variables here. Note that, in many applications,
we will have α < 1 < β, but this is not required for the pool to work.

2

Proof. Let f(x, y) := xy be the invariant function of the CPMM without virtual reserves
and let g(t) = f(t + (a, b)) be the CPMM with virtual reserves, i.e., the 2-CLP. Observe
that g(t) = L2 iff (1) holds. Write t′ := t + (a, b) =: (x′, y′) for the virtual reserves. The
price of asset x′ in the mechanism f is pf

x(t′) = y′/x′. Since a and b are (required to be)
constant in L, they don’t change along the curve of (x, y) pairs satisfying (1). From this
it follows (see, e.g., Klages-Mundt and Schuldenzucker (2021)) that for the 2-CLP, the
price of x is simply

px(t) = pf
x(t′) = y′

x′ = y + b

x + a
. (2)

This is of course equivalent to y + b = px(x + a) and since (1) should be satisfied at the
same time, we have

px(x + a)2 = L2

at all points on the curve. Specifically at x = 0 we need px = β and thus

βa2 = L2

and thus a = L/
√

β. Likewise, (2) and (1) imply

(y + b)2/px = L2

and for y = 0 we need px = α and thus

b2/α = L2,

which implies b = L ·
√

α. The formulas for x+ and y+ immediately follow from the
computed values for a and b and the invariant equation (1).

For some applications (such as optimal order routing), we need the derivative of the
price. This is easily computed:

Lemma 2. The derivative of the price of x dependent on changes in x and y, respectively,
along the trading curve, is

dpx

dx
= −2 · y′

x′2

dpx

dy
= 2 · 1

x′

Let px per y = 1/px is the price of y denoted in units of x. Then

dpx per y

dx
= 2 · 1

y′

dpx per y

dy
= −2 · x′

y′2 .

3

Proof. We have (see above) px = y′

x′ = L2

x′2 , where the second equality is by the invariant
equation (1). Since L is kept constant along the trading curve by definition,

dpx

dx
= dpx

dx′ = −2 · L2

x′3 = −2 · y′

x′2 ,

where the first identity is because x′ = x+a and a is constant along the trading curve and
the last equality is by the invariant. For the second identity, note that also px = y′

x′ = y′2

L2

and thus
dpx

dy
= dpx

dy′ = 2 · y′

L2 = 2 · 1
x′ .

The identities for px per y follow by symmetry.

2.2 Standard Operations

We now discuss how to perform standard operations in the 2-CLP pool.

2.2.1 Initialization from real reserves

We now show how to initialize a pool based on the amount of reserves x and y. For a
more gas-efficient way that is based on px and L, see below.

Initialization from real reserves requires computing the liquidity invariant L based on
x and y. This operation is, perhaps surprisingly, not completely trivial, e.g., in terms of
gas. Already for the CPMM without virtual reserves, it is easy to compute L2 = x · y, but
to compute L from this, we need to take a square root, which is a somewhat significant
operation in terms of gas. One might simply store the square k := L2 in this case to
avoid the square root; however, this would make liquidity updates more expensive (see
Section 2.2.3 for the 2-CLP).

With virtual reserves, an additional complication arises: if we replace the above values
for a and b in (1), then both sides of the equation depend on L. This is normal: virtual
reserves allow us to use a larger L than we otherwise would, making the curve flatter
and adding liquidity in terms of a lower price impact within the specified bounds. The
following proposition shows how to solve this equation. This operation is still somewhat
gas-intensive because we still need to compute a square root.

Proposition 1. For any 0 ≤ α < β and any x, y ≥ 0, there exists a unique L ≥ 0 such
that (1) holds when the values for a and b are chosen like in Lemma 1. Specifically,

L = (1−
√

α/
√

β)−1·
[

1
2 · (y/

√
β + x

√
α) +

√
1
4 · (y/

√
β + x

√
α)2 + (1 −

√
α/
√

β)xy

]
.

4

Proof. (1) is equivalent to

0 = L2 − (x + a)(y + b)

= L2 − (x + L/
√

β)(y + L ·
√

α)

=
(

1 −
√

α/β

)
L2 −

(
y/
√

β + x
√

α
)

L − xy.

The coefficient of L2 is positive since α < β and the coefficient of L and the constant
intercept are obviously non-positive. This implies that this equation has a unique non-
negative solution for L and it is equal to the specified formula (to see this, consider, for
instance, the quadratic formula).

2.2.2 Initialization from price

When a new pool is initialized, we can sometimes assume that a price px is given
exogenously (e.g., from another market). We may now want to initialize a pool based on
one of two further numbers: the value of the liquidity invariant L or the portfolio value

V := pxx + y.

Note that the liquidity invariant L is not meaningful in the context of AMMs of other
shapes or even to the 3-CLP; in contrast, the portfolio value V is universally meaningful
and can be used to compare the 2-CLP to other AMMs. We first describe how to initialize
x and y based on px and L.

Remark 1. If there are no virtual reserves, we have pxx = y
x · x = y and thus V = 2y.

This is a well-known property of the CPMM without virtual reserves: the two assets
always contribute with equal values to the reserve. When there are virtual reserves, this
statement need no longer true. More in detail, one can show using Lemma 1 and simple
algebra that pxx = y′

x′ · x = y iff px =
√

αβ. One recovers the equations for the CPMM
from the 2-CLP in the limit for α → 0 and β → ∞.

Lemma 3. In a 2-CLP pool with price bounds [α, β], price px ∈ [α, β], and liquidity
invariant L we have

x = L · (1/
√

px − 1/
√

β)

y = L · (√px −
√

α)

The 2-CLP obviously cannot offer any prices outside its price range. If the exogenous
price is p̂x < α, then we have to choose x = x+ and y = 0 and if p̂x > β we choose x = 0
and y = y+. This is the unique choice that does not create an arbitrage opportunity with
the external market.

5

Proof of Lemma (3). Like in the proof of Lemma 1 we have

px(x + a)2 = L2

(y + b)2/px = L2.

The statement now follows immediately from the values of a and b computed in Lemma 1.

We now show how to compute the portfolio value V based on the price px and the
liquidity invariant L.

Proposition 2. In a 2-CLP with price bounds [α, β], price px ∈ [α, β], and liquidity
invariant L, we have

V = L ·
[
2√

px − px/
√

β −
√

α
]

.

Proof. Follows immediately by plugging the values for x and y from Lemma 3 into the
definition of V and simplifying.

We can also apply this proposition in reverse to compute L from V and px. This
yields the following:

Lemma 4. In a 2-CLP with price bounds [α, β], price px ∈ [α, β], and portfolio value V ,
we have

L = 1
2√

px − px/
√

β −
√

α
V

x =
1/

√
px − 1/

√
β

2√
px − px/

√
β −

√
α

V

y =
√

px −
√

α

2√
px − px/

√
β −

√
α

V

Proof. Follows from Proposition 2 and Lemma 3.

2.2.3 Liquidity Update

A common operation is to add or remove liquidity, changing the liquidity invariant L while
keeping the price px the same.

Proposition 3. Assume (x, y, L) satisfy (1) at price px and let ∆L ∈ [−L, ∞). Then
(x + ∆x, y + ∆y, L + ∆L) satisfy (1) at price px iff

∆x = ∆L ·
(
1/

√
px − 1/

√
β
)

∆y = ∆L ·
(√

px −
√

α
)

If some external price p̂x /∈ [α, β] is applied, then one of x or y is 0 and only the other
reserve component should be updated.

6

Proof of the proposition. This follows immediately from Lemma 3.

An LP who wants to add/withdraw a certain amount of portfolio value could use
Lemma 4 to compute the amounts ∆x and ∆y she would have to provide/withdraw to
do this without changing the price. This is a simple operation because L is linear in V (if
px remains unchanged) and x and y are linear in L, so the whole operation is linear.

When the real reserves x, y are known (as they usually are in practical situations where
one wants to update liquidity), we receive a simpler formula for the liquidity update:

Corollary 1. Assume (x, y, L) satisfy (1) at price px and let ∆L ∈ [−L, ∞). Then
(x + ∆x, y + ∆y, L + ∆L) satisfy (1) at price px iff

∆x

x
= ∆y

y
= ∆L

L
.

Proof. This follows immediately by combining Proposition 3 with Lemma 3. The factor
that only depends on px cancels out.

Note that a liquidity provider who wants to add or remove liquidity cannot simply
choose the composition of the assets she adds/removes, as that would change the price.
LPs who want to do this need to combine their liquidity update with an appropriate trade
to receive the right composition of assets.

2.2.4 Trade (Swap) Execution

Trade execution is simple in the 2-CLP. The following proposition provides a general way
to specify this: a trader can provide or request an amount of x or of y.

Proposition 4. Assume that (x, y, L) satisfy (1). Then (x + ∆x, y + ∆y, L) satisfy (1)
iff

∆y = L2

x′ + ∆x
− y′ = y′∆x

x′ + ∆x

and, equivalently,

∆x = L2

y′ + ∆y
− x′ = x′∆y

y′ + ∆y
.

Such values exist (in such a way that none of the new reserves x + ∆x and y + ∆y are
negative) iff ∆x ∈ [−x, x+ − x] and ∆y ∈ [−y, y+ − y], respectively, where x+ and y+

are like in Lemma 1.

Proof. Note that additive changes to the real reserves affect the virtual reserves equally,
i.e., we have (x + ∆x)′ = x + ∆x + a = x′ + ∆x and likewise for y. The equations now
immediately follow from (1) for the updated reserves,

(x′ + ∆x)(y′ + ∆y) = L2.

7

The respective equalities follow from L = x′y′ and simple algebraic transformation.
The bounds in the last sentence of the proposition follow immediately from Lemma 1.

One would use Proposition 4 to execute a trade as follows: Assume that a trader
wants to exchange an amount of ∆x of asset x for asset y (the other direction being
symmetric). If ∆x > 0, the trader wants to sell asset x to the mechanism for asset y and
if ∆x < 0, the trader wants to buy asset x for asset y. We first use the last sentence of
the proposition to check if this is even possible. We then use the formula in the theorem
to compute ∆y from ∆x. We receive (if ∆x > 0) / pay out (if ∆x < 0) the amount ∆x

from/to the user and receive/pay out (respectively) ∆y to/from the user. This operation
changes the instantaneous price is to the new value

px,(x+∆x,y+∆y) = y′ + ∆y

x′ + ∆x
.

Note that we can replace L2 in Proposition 4 by x′y′ when these quantities are known.
This may be convenient from a technical point of view.

For some applications, like optimal order routing, we need to compute the price of
the asset that leaves the pool priced in units of the asset that goes into the pool, and the
derivative of that price. We can easily map this to the results we already have. In the
following, we assume that asset y goes into the pool and x comes out, i.e., the trader
buys x for y from the mechanism; the other case is of course symmetric.

Lemma 5. Assume that (x, y, L) satisfy (1) and consider the functions

yin :[0, x] → [0, y+ − y]

xout :[0, y+ − y] → [0, x]

defined as follows. If ∆yin ∈ [0, y+ − y], then xout(∆yin) := ∆xout such that (x −
∆xout, y + ∆yin, L) satisfy (1). If ∆xout ∈ [0, x], then yin(∆xout) := ∆yin such that
(x − ∆xout, y + ∆yin, L) satisfy (1). Note that we consider ∆xout and ∆yin in absolute
value here. Then the following hold:

1. xout ◦ yin = id and yin ◦ xout = id.

2. px(x − xout(∆yin), y + ∆yin) = y′+∆yin
x′−xout(∆yin) = 1

/
dxout(∆yin)

d∆yin
and

px(x − ∆xout, y + yin(∆xout)) = y′+yin(∆xout)
x′−∆xout

= dyin(∆xout)
d∆xout

.

3. dpx(x−xout(∆yin), y+∆yin)
d∆yin

= 2 · 1
x′−xout(∆yin) and

dpx(x−∆xout, y+yin(∆xout))
d∆xout

= 2 · y′+yin(∆xout)
(x′−∆xout)2 .

Proof. 1. follows immediately by definition and by uniqueness.
2. follows by choice of the functions xout and yin. The respective first equality is easy

to see.

8

3. follows from part 2 and Lemma 2, noting that the simple derivative dpx(x−xout(∆yin), y+∆yin)
d∆yin

is equal to the derivative dpx

dy along the trading curve, evaluated at (x − xout(∆yin), y +
∆yin), since this expression parameterizes the trading curve in the direction of y. Like-
wise, for the second equation we consider dpx

dx and note that (x − ∆xout, y + yin(∆yin))
parameterizes the trading curve in the direction of −x. Since x decreases along this pa-
rameterization, another factor (−1) enters into the derivative (which follows immediately
from, e.g., the chain rule).

2.3 Integrating Fees

2.3.1 Swaps with Fees

Percentage fees are computed relative to the amount that flows into the contract.3

Specifically, let γ be the percentage fee. Then a fee of γ max(∆x, ∆y) is paid by the
trader as follows: assume WLOG that the trader provides ∆x; the case where she provides
∆y is analogous. If ∆x > 0, retain a fee of γ∆x, replace ∆x by (1 − γ)∆x, and execute
the remainder of the trade as normal. If ∆x < 0, first execute the trade as normal to
receive an amount ∆y > 0; ask the trader for an amount 1/(1 − γ)∆y, retain a fee
of γ/(1 − γ)∆y of this and swap the remaining ∆y into the contract.4Observe that no
changes to the mathematical foundations are necessary since we simply retain part of the
assets put into the swap.

We can describe the mechanism with fees in another way: let ∆x+ := max(0, ∆x)
and ∆x− := max(0, −∆x), and observe that ∆x = ∆x+ − ∆x− and at most one of
∆x+, ∆x− ̸= 0; likewise for y. It is easy to see that the mechanism described in this
paragraph chooses ∆x or ∆y given the other one such that

(x + (1 − γ)∆x+ − ∆x−) · (y + (1 − γ)∆y+ − ∆y−) = L2. (3)

This was previously described by Angeris and Chitra (2020).
An additional design decision needs to be made now regarding what should be done

with the fee of size γ max(∆x+, ∆y+). There are two options: it can either simply be
stored on a separate account, to be collected by the LP at their own discretion (non-
compounding fees) or it can be automatically re-invested into the pool (compounding
fees). We argue that compounding fees are desirable for two reasons: first, they improve
capital efficiency for the fees generated, allowing them to serve LPs instead of sitting idle.
Second, as we will see, they allow the fees to be stored implicitly in the real reserves,
without keeping a fee account for each LP, reducing gas costs.

Remark 2 (Non-compounding fees). If we were to implement non-compounding fees, we
3See also Angeris and Chitra (2020) for some theoretical background for this section.
4This is the unique way of specifying fees where (1) the trader can specify if they want to send or

receive money and (2) the fees are the same when they send X or receive Y and when they send Y or
receive X, respectively.

9

would execute a trade with fees normally, then add the fees into the pool and update
L based on the new reserves. When there are several LPs, fees accrue individually to a
separate fee balance fi = (fi,x, fi,y) that is stored for each LP i. Specifically, when a
swap occurs, fi increases by Li/L · f , where f := γ(∆x+, ∆y+) is the total fee in both
assets. Note that one of fx or fy is 0. Uniswap v3 implements non-compounding fees.
The main motivation for this is the potentially large amount of user-defined price bounds
(Adams et al., 2021). In our case, we do not face this problem.

For some applications, like optimal order routing, we need to consider the “price” of
an asset including fees, and we also need to consider its derivative. The following lemma
shows how to calculate this. This generalizes Lemma 5.

Lemma 6. Assume that (x, y, L) satisfy (1) and assume that there are swap fees of size
γ. Let γ̄ := 1 − γ. Consider the functions

yin :[0, x] → [0, y+ − y]

xout :[0, y+ − y] → [0, x]

defined as follows. If ∆yin ∈ [0, y+ − y], then xout(∆yin) := ∆xout such that (x −
∆xout, y + γ̄∆yin, L) satisfy (1). If ∆xout ∈ [0, x], then yin(∆xout) := ∆yin such that
(x − ∆xout, y + γ̄∆yin, L) satisfy (1). Let px,γ,in(∆yin) := 1

γ̄ px(x − xout(∆yin), y + ∆yin)
and px,γ,out(∆xout) := 1

γ̄ px(x − ∆xout, y + yin(∆xout)). Then the following hold:

1. xout ◦ yin = id and yin ◦ xout = id. Furthermore, px,γ,in ◦ yin = px,γ,out and
px,γ,out ◦ xout = px,γ,in.

2. px,γ,in(∆yin) = 1
γ̄

y′+γ̄∆yin
x′−xout(∆yin) = 1

/
dxout(∆yin)

d∆yin
and

px,γ,out(∆xout) = 1
γ̄

y′+γ̄yin(∆xout)
x′−∆xout

= dyin(∆xout)
d∆xout

.

3. dpx,γ,in(∆yin)
d∆yin

= 2 · 1
x′−xout(∆yin) and

dpx,γ,out(∆xout)
d∆xout

= 1
γ̄ · 2 · y′+γ̄yin(∆xout)

(x′−∆xout)2 .

Note that computing the virtual reserves x′ and y′ requires knowledge of the invariant
L. Note further that, since we are only interested in an individual trader, it is not relevant
for this computation if fees compound or not.

Proof. 1. follows immediately by definition.
2. The respective first equality follows immediately by definition. Towards the second

equality in the first line, we can calculate explicitly

xout(∆yin) = x′ − L2

y′ + γ̄∆yin

yin(∆xout) = 1
γ̄

(
L2

x′ − ∆xout
− y′

)

10

and thus

dxout(∆yin)
d∆yin

= γ̄
L2

(y′ + γ̄∆yin)2 = γ̄
x′ − xout(∆yin)

y′ + γ̄∆yin
= γ̄/px(x − xout(∆yin), y + γ̄∆yin)

dyin(∆xout)
d∆xout

= 1
γ̄

L2

(x′ − ∆xout)2 = 1
γ̄

y′ + γ̄yin(∆xout)
x′ − ∆xout

= 1
γ̄

px(x − ∆xout, y + γ̄yin(∆xout)).

3. From part 2, we receive

dpx,γ,in(∆yin)
d∆yin

= d
d∆yin

1
γ̄

(y′ + γ̄∆yin)2

L2 = 2y′ + γ̄∆yin
L2 = 2 1

x′ − xout(∆yin)
dpx,γ,out(∆xout)

d∆xout
= d

d∆xout

1
γ̄

L2

(x′ − ∆xout)2 = 2 1
γ̄

L2

(x′ − ∆xout)3 = 2 1
γ̄

y′ + γ̄yin(∆xout)
(x′ − ∆xout)2 .

2.3.2 Slippage and Normalized Liquidity

Slippage is defined as the relative deviation of the effective (non-marginal) price of a trade
to the marginal price before the trade. Following Lemma 6, we consider the effective
price including fees and assume that asset y is swapped into and asset x is swapped out
of the pool. Then the marginal price including fees is

px,γ := px,γ,in(0) = px,γ,out(0) = 1
γ̄

px,

evaluated at the reserve state (x, y) before the swap. The effective price including fees
is the amount that went into the pool (before fees) relative to the amount that left the
pool, i.e.,

Px,γ := ∆yin
∆xout

,

when ∆yin, ∆xout are chosen such that the invariant holds. Note that Px,γ depends on
∆yin and ∆xout, but px,γ does not. Slippage is now the quotient of the two, normalized
to 0, i.e.,

S := Px,γ

px,γ
− 1

as a function of either ∆yin or ∆xout. Call these two variants Sin(∆yin) and Sout(∆xout).
For some applications (like optimal order routing), we are also interested in the lineariza-
tions (i.e., derivatives) of these functions at 0. The following lemma shows how to
compute these values.

Lemma 7.

1. S = γ̄∆yin
y′ = ∆xout

x′−∆xout
.

2. dSin(∆yin)
d∆yin

(0) = γ̄
y′ and dSout(∆xout)

d∆xout
(0) = 1

x′ .

11

Proof. 1.: Observe that

∆xout = x′ − L2

y′ + γ̄∆yin
= x′ − x′y′

y′ + γ̄∆yin
= x′(y′ + γ̄∆yin) − x′y′

y′ + γ̄∆yin
= γ̄x′∆yin

y′ + γ̄∆yin

∆yin = 1
γ̄

(
L2

x′ − ∆xout
− y′

)
= 1

γ̄

x′y′ − y′(x′ − ∆xout)
x′ − ∆xout

= 1
γ̄

y′∆xout
x′ − ∆xout

.

Therefore,

∆yin
∆xout

= ∆yin
y′ + γ̄∆yin

γ̄x′∆yin
= 1

γ̄

y′

x′ + ∆yin
x′ = px,γ + ∆yin

x′

and also ∆yin
∆xout

= 1
∆xout

1
γ̄

y′∆xout
x′ − ∆xout

= 1
γ̄

y′

x′ − ∆xout
= px,γ

x′

x′ − ∆xout
.

Now S = 1
px,γ

∆yin
∆xout

− 1 and thus

S = px,γ

px,γ
+ 1

px,γ

∆yin
x′ − 1 = γ̄

∆yin
y′

and also S = x′

x′ − ∆xout
− 1 = ∆xout

x′ − ∆xout
.

2.: For the first identity, part 1 implies that S is linear as a function of ∆yin and thus
the result follows immediately. For the second identity, we calculate from part 1 that

dSout(∆xout)
d∆xout

= x′

(x′ − ∆xout)2

and evaluate this at ∆xout = 0.

A standard notion of linearized slippage, introduced by Balancer,5 corresponds to
dSin(∆yin)

d∆yin
(0) = γ̄

y′ . Normalized liquidity at a given point is defined as the inverse of
standard linearized slippage, i.e.,

Normalized Liquidity = 1
γ̄

y′.

Note that the values computed here are identical to those for Balancer’s weighted-
product pool6 when all weights are equal to 1/2 (i.e., the assets are weighted equally)
and we in addition replace the real reserves y by the virtual reserves y′. Thus, virtual
reserves merely introduce an offset in the calculation of slippage and normalized liquidity.

5See, e.g., https://medium.com/balancer-protocol/calculating-value-impermanent-loss-a
nd-slippage-for-balancer-pools-4371a21f1a86

6See, e.g., the aforementioned blog post.

12

https://medium.com/balancer-protocol/calculating-value-impermanent-loss-and-slippage-for-balancer-pools-4371a21f1a86
https://medium.com/balancer-protocol/calculating-value-impermanent-loss-and-slippage-for-balancer-pools-4371a21f1a86

2.3.3 Compounding Fees and Keeping the Invariant Implicit

Compounding fees can be implemented in a particularly simple way.7 Assume that the
user provides ∆x > 0, the other cases are analogous. Assume the current invariant is
L. Compute ∆y such that (x + (1 − γ)∆x, y + ∆y, L) satisfy (1). The new reserves
after the trade are (x + ∆x, y + ∆y). This will not satisfy (1) with L, but with some
L′ > L. We can use 1 to compute this new L′. Liquidity providers collect their fees
by removing liquidity via Proposition 3 or Corollary 1. It is not necessary to store the
fees collected by any individual LP. Note that, in contrast to non-compounding fees, the
liquidity “invariant” will grow over time as trades are executed. It is therefore likely more
gas-efficient to not store L at all, but simply to recompute it whenever an operation
(swap or liquidity adjustment) is performed.8

Remark 3 (Additional price impact due to compounding). One should be aware that
compounding fees also slightly exacerbate price impact when trades tend to go in the
same direction. To see why this happens, assume that a trader wants to sell x for y,
so that ∆x > 0. Fees charged on the trade amount to γ∆x of asset x and the trade
implies a price impact that depresses the price of x. When the fees are to be re-invested,
since they only consist of asset x, this makes the reserve more unbalanced towards x and
therefore further depresses the price of asset x. Note that this is undesirable for the next
trade if they sell x, but desirable if they buy x. Overall, this effect appears to be rather
mild and we believe that the added liquidity is usually worth the additional price impact.

2.3.4 Accounting for LP Shares

When fees do not compound, we can simply use the liquidity invariant L to account for
LP shares: an LP can increase L by ∆L to receive an amount of LP shares equal to ∆L.
They can redeem these shares to reduce L by (the current price-equivalent of) what they
put in. However, when fees compound, L changes over time and so each trader’s amount
of LP shares would have to change over time as well. This is very inconvenient for LPs
and also likely gas-inefficient when these amounts need to be updated after each trade.

Instead, a separate accounting structure for LP shares should be used that provides
an additional layer of indirection before L.9 The amount of LP tokens is stored in a

7This section was inspired by Balancer and transfers how Balancer’s weighted pool collects fees to the
2-CLP. It turns out that the mechanism is relatively generic as long as L can be computed with not too
much computational effort.

8Note that compounding fees imply higher computational effort because swaps and liquidity updates
now require computation of a square root, whereas they could be done using elementary operations without
compounding. However, optimized square root implementations, like the PRBMath, imply gas costs that
are significantly below a store operation. Therefore, the savings in gas costs from saved store operations
at least cancel out the additional gas costs due to computation. For the same reason, while one might
store L after a swap to save a square root for a following liquidity update, this is likely not gas-efficient. It
might be possible to further reduce gas costs by exploiting the knowledge that (x + (1 − γ)∆x, y + ∆y, L)
satisfy (1) and that γ is relatively small.

9This is again inspired by Balancer.

13

state variable Si for each LP position i. The mechanism also keeps track of S :=
∑

i Si.
A liquidity update by LP i increases L by ∆L (where ∆L ∈ [−L, ∞)) iff it increases
Si by S · ∆L/L. Equivalently, to change Si to Si + ∆S, the LP needs to change L to
L + ∆L, where ∆L = L · ∆S/S. To do this, amounts of the assets x and y need to
be provided / are redeemed according to Proposition 3 or Corollary 1. This operation
obviously increases S to S + ∆S. When the pool is initialized with initial reserves, an
initial (arbitrary) value for S must be chosen. It seems natural to choose S = L after
initialization, though Balancer’s weighted pool uses 2 · L or, more generally, n · L, where
n is the number of tokens in the pool, in the interest of making token amounts more
comparable across pools.10

The following result shows that the real reserves in the pool are split up among LPs
according to the LP shares. This is a basic requirement for LP share accounting.

Proposition 5. Let xLP i and yLP i be the maximal amounts of asset x and y, respectively,
that LP i can redeem their LP shares fore. Then

xLP i = Si

S
· x

yLP i = Si

S
· y.

Proof. The maximal amount of asset x that LP i can redeem for corresponds to ∆L =
−L · Si/S and is thus equal to

xLP i = L · Si/S ·
(
1/

√
px − 1/

√
β
)

= Si

S
· L
(
1/

√
px − 1/

√
β
)

= Si

S
· x.

Likewise for y.

It is furthermore easy to see that adding liquidity and then removing it again is
equivalent to no operation at all, so that fees only go to those LPs that were present
when those fees accrued, and proportionally so.

In fact, the same linearity that drives the result of the previous proposition implies
that the invariant L does not even have to be considered when new LP shares are minted
or redeemed, as the following proposition shows.

Proposition 6. An LP’s liquidity update changes x by an absolute amount ∆x, y by ∆y,
and S by ∆S iff

∆x

x
= ∆y

y
= ∆S

S
.

Proof. When a liquidity update is done following the rules above, then

∆S

S
= ∆L

L
= ∆x

x
= ∆y

y
,

10See WeightedPool2Tokens.sol, function _onInitializePool in the Balancer repo.

14

where the first equality is by definition and the others are by Corollary 1. The other
direction follows by uniqueness.

Remark 4. The simplified form of accounting for LP shares laid out in Proposition 6 is
only possible as long as we can require that the two amounts ∆x and ∆y are provided
in proportions defined by the protocol. As soon as LPs can also provide assets in an
unbalanced way, the price changes during an LP update and the above technique does
not work anymore.

2.3.5 Protocol Fees

In some infrastructures, like Balancer, pools need to pay protocol fees, which go to the
creator of the pool infrastructure. The amounts received by LPs are reduced by the
protocol fees.11 Using the kind of accounting outlined here, it is easy to implement
protocol fees. Consider a time where the outstanding amount of protocol fees are to be
paid. Let L0 be the value of the invariant the last time protocol fees were paid and let L

be the value of the invariant now, and assume the protocol fees are equal to a factor δ.
Then the protocol fees can be paid by reducing liquidity by an amount ∆L := δ(L − L0)
and paying assets x and y proportionally to the protocol according to Proposition 3 or
Corollary 1. The protocol thus acts as a “virtual LP.” Note that none of the actual LP
share amounts Si or S need to be adjusted because their accounting is always relative to
L. At the end of the process, the state variable L0 needs to be updated to L to enable
accounting for the next time protocol fees are paid. In Balancer’s own implementation in
the weighted pool, this process is executed before every liquidity update. It likely makes
sense to keep it this way because LPs can usually afford the extra gas required, and also,
doing this ensures that the pool always has sufficient assets to pay its protocol fees.

Paying Protocol Fees in LP Tokens. We can take the above idea one step further:
instead of paying out the amounts corresponding to the protocol fees in the underlying
assets, we can mint new LP tokens and pay the protocol fees directly in them. This has a
number of advantages, most importantly gas fees because we save three token transfers.
Another advantage is that protocol fees do not affect the invariant (instead, it affects the
supply of the LP tokens), which simplifies the interaction between protocol fees and a
liquidity update. Paying protocol fees in LP tokens is equivalent to first extracting them
as assets, where then the protocol acts as an LP and puts those tokens back into the
pool.

11This section is again inspired by Balancer’s weighted pool. Note that Balancer’s protocol fees are
currently set to 0%, but may become positive in the future. Note also that the specification leaves
significant leeway in how the protocol fees should be interpreted. For example, the weighted pool pays the
protocol fees using a single asset in the pool (namely, the highest-weight one) while the implementation
described here always pays them in a mix of both assets. This has the advantage that protocol fees do
not affect the price.

15

Proposition 7. Protocol fees of factor δ due to a change in the invariant from L0 to
L > L0 correspond to an amount of new LP tokens equal to

∆S = S · ∆L

L − ∆L
,

where ∆L := δ(L − L0).

Proof. We use the aforementioned equivalence. Consider first a situation where protocol
fees are paid in the underlying assets. Then, by definition, this reduces the invariant by
∆L to L − ∆L. When the assets are then put back into the pool, this increases the
invariant again from L − ∆L to L and thus (see above) generates an amount of LP
tokens ∆S that satisfies

∆S

S
= ∆L

L − ∆L
.

Remark 5 (Generality of the approach). We were able to re-use Balancer’s fee and LP
share accounting approach essentially unmodified, which suggests a great deal of generality.
It appears that this approach can always be followed when the following conditions hold:

1. A swap (without fees) can be performed with acceptable gas cost, even if the value
of the invariant is not known.

2. When both assets change by the same factor, the price stays the same.

3. We can compute with acceptable gas cost a transformation of the liquidity invariant
(here, L) that is proportional to the real reserves at any fixed price level.

The second condition is a form of scale invariance that is given in most AMMs. It is
implied by Proposition 3. It is convenient but not necessary for our purposes to use the
liquidity invariant L in our calculations. LP accounting can be done without explicitly
mentioning L following Proposition 6. However, it is not clear how protocol fees would be
described in such a framework; above, the invariant L provides a definite, one-dimensional
way of measuring by how much the pool has grown the last time fees were paid. It appears
that such a measure is necessary for well-defined protocol fees.

Remark 6 (Non-compounding protocol fees). An alternative interpretation of protocol
fees is in a non-compounding way, where the protocol receives a share of δ of all fees (i.e.,
a share δγ∆x when ∆x > 0). These two definitions are not in general equivalent, not
even when we compare them in terms of the portfolio value sent to the protocol. Letting
protocol fees compound has the same advantages and disadvantages as for regular swap
fees, and we believe that overall, the advantages outweigh the drawbacks.

2.4 Implementation

The mechanism (to be precise, it’s compounding-fee variant, see above), should track the
following variables over the course of its operation:

16

• The constants √
α and

√
β. These can either be computed once when the contract

is initialized or the price bounds are changed, or they can be computed off-chain,
provided as input, and only verified on-chain. In any case, the computational effort
is limited as these bounds will only be adjusted very rarely.

• The real reserves x and y, obviously.

For every swap and liquidity update, the value L should be recomputed using Proposition 1.
Observe that the virtual reserves x′ = x + a = x + L/

√
β and y′ can be easily computed

from these values.
Given these values, Proposition 4 provides an easy and gas-efficient way to execute

trades. Adjusting liquidity (Proposition 3) requires the value √
px. However, the square

root in this expression does not have to be computed explicitly but can be read from the
other variables, as the following lemma shows:

Lemma 8. √
px = L/x′

Proof. We have x′y′ = L2 and px = y′/x′. This implies px = L2/x′2, which implies the
statement.

The preceding statement is not helpful when newly initializing a 2-CLP at a certain
price. In this case, √

px has to be computed or checked explicitly. Of course, this is trivial
in the (common) special case when the initial price is 1.

3 3-asset variant

We now consider a 3-asset concentrated liquidity pool (3-CLP) based on a constant-
product curve with virtual reserves. The real reserve is of form (x, y, z) and the invariant
is

(x + a)(y + b)(z + c) = L3. (4)

Again, we will see that it is useful to specify the invariant as L3 since many values will be
linear in L. We assume and prove in the following that the offsets a, b, c are functions of L

only. We use z as the numéraire. We first consider the general case, where arbitrary price
bounds are provided. In the majority of this section, we will then consider a symmetric
variant, where the price bounds must satisfy additional symmetry conditions. This will
greatly simplify the involved calculations.

There are two relevant prices in the 3-CLP: px = dz
dx and py = dz

dy . Note that the the of
x denoted in y, and vice versa, are determined by px and py because px per y = dx

dy = py/px

and py per x = 1/px per y = px/py (Klages-Mundt and Schuldenzucker, 2021).
Prices in the 3-CLP are analogous to the 2-dimensional variant:

17

Lemma 9. The prices in the 3-CLP are

px = z′

x′

py = z′

y′ ,

where x′ := x + a, y′ := y + b, and z′ := z + c are the virtual reserves.

Proof. We use the tools from Klages-Mundt and Schuldenzucker (2021).12 Let f(x, y, z) =
xyz. Then ∇f = (yz, xz, xy) and thus

pf
x = yz

xy
= z

x

pf
y = xz

xy
= z

y
.

Since a, b, c are constants, the prices under g := f ◦ (+(a, b, c)) are simply the prices
under f shifted by the virtual reserve offsets.

We can use this to fit the 3-CLP to price bounds. Note that the virtual reserve offsets
only offer three degrees of freedom a, b, c (as functions of L). We will see that this implies
that only three of the price bounds for px and py can be specified and the fourth is
implied by them, as are the bounds for py per x (and thus also for px per y).

Proposition 8. Let αx < βx and αy < βy. Then the 3-CLP attains prices px ∈ [αx, βx],
py ∈ [αy, βy], and this is tight, iff

a =L · α−1/3
x α1/3

y β−1/3
x

b =L · α2/3
x α−2/3

y β−1/3
x

c =L · α1/6
x α1/3

y β1/6
x

and

βy = αy

αx
βx. (5)

In this case, furthermore, py per x ∈ [αy per x, βy per x] tightly iff αy per x = α
3/2
x α−1

y β
−1/2
x

and βy per x = α
1/2
x α−1

y β
1/2
x .

12These results follow essentially by the implicit function theorem and the multi-dimensional chain rule.

18

Proof. We need to find values a, b, c such that

px = z + c

x + a
∈ [αx, βx]

py = z + c

y + b
∈ [αy, βy]

across those x, y, z where (x + a)(y + b)(z + c) = L3

and x ≥ 0, y ≥ 0, z ≥ 0.

This is equivalent to

px = z′

x′ ∈ [αx, βx]

py =z′

y′ ∈ [αy, βy]

across those x′, y′, z′ where x′y′z′ = L3

and x′ ≥ a, y′ ≥ b, z′ ≥ c.

By transforming the invariant and replacing z′ and x′, respectively, into the formulas for
px and py, we receive

px = L3

x′2y′ = y′z′2

L3

py = L3

x′y′2 = x′z′2

L3 .

From these formulas it immediately follows that px is maximized when the denominator
in the first fraction is minimized, i.e., for x′ = a and y′ = b; thus, its maximum value is
L3

a2b
. Repeating this for the other three fraction yields that the following equalities need

to hold:

I αx = bc2

L3 II βx = L3

a2b

III αy = ac2

L3 IV βy = L3

ab2 .

We can solve equations I–III for a, b, c as follows. By equation I and III we have

αxL3

b
= c2 = αyL3

a
(6)

and therefore
b = a · αx

αy
. (7)

19

Plugging this into II yields

βx = L3

a2 · a · αx
αy

= L3

a3 · αy

αx

⇔ a = L · α−1/3
x α1/3

y β−1/3
x .

Plugging this in turn into (7) yields

b = L · α1/3
y α−1/3

x β−1/3
x · αx

αy

= L · α2/3
x α−2/3

y β−1/3
x .

Finally, using (say) the second equality of (6) we receive

c =
(

αyL3

L · α
1/3
y α

−1/3
x β

−1/3
x

)1/2

= L · α1/6
x α1/3

y β1/6
x .

Equation IV now yields

βy = L3

L · α
−1/3
x α

1/3
y β

−1/3
x ·

(
L · α

2/3
x α

−2/3
y β

−1/3
x

)2

= 1
αxα−1

y β−1
x

= αy

αx
βx.

For the bounds for py per x, we apply the same methodology as above and replace the
values for a, b, c. We have

py per x = y′

x′ = L3

x′2z′ = y′2z′

L3 .

Like above, this is minimized and maximized, respectively, at

αy per x = L−3 · b2c = L−3 ·
(
L · α2/3

x α−2/3
y β−1/3

x

)2
· L · α1/6

x α1/3
y β1/6

x

= α3/2
x α−1

y β−1/2
x

βy per x = L3 ·
(
a2c
)−1

= L3 ·
(
L · α−1/3

x α1/3
y β−1/3

x

)−2
·
(
L · α1/6

x α1/3
y β1/6

x

)−1

= α1/2
x α−1

y β1/2
x .

The bounds in the above proposition are rather asymmetric. This is because we have
made the (arbitrary) choice to calibrate the offsets to the three bounds αx, βx, αy rather
than (say) any other set of three of the four bounds for x and y. Note that (5) allows us
to infer any one of the four price bounds given the other three. Therefore, Proposition (8)
allows computing the virtual reserve offsets based on (essentially) any parameterization

20

of the four price bounds, or of any combination of the six bounds for px, py, py per x.
While it may be surprising at first that we can only choose 3 out of 4 price bounds

freely, there is a simple intuitive explanation for this: with 3 assets, we only have 3 virtual
reserve offsets to choose. These 3 variables only offer 3 degrees of freedom, so we can
only fit 3 price bounds. This phenomenon generalizes to any number of assets greater
2. Specifically, an “n-CLP” with n assets has n virtual reserve offsets, but n − 1 assets
other than the numéraire and thus 2 · (n − 1) price bounds one may want to calibrate
to. And, of course n < 2 · (n − 1) for all n > 2. For n = 2, the two are equal and the
two price bounds can be chosen freely. In addition, the bounds for the prices pxi also
determine the bounds for prices pxj per xi .13

The following corollary shows that we can always choose equal price bounds for px

and py. However, to also have the price bounds for the third asset pair, py per x, equal to
those, we need an additional condition.

Corollary 2. In the nomenclature of Proposition 8, if αx = αy, then also βx = βy. In
this case, αy per x = (αx/βx)1/2 and βy per x = (βx/αx)1/2 = 1/αy per x and

a = b = L · β−1/3
x

c = L · α1/2
x β1/6

x .

Furthermore, we have αy per x = αx iff βy per x = βx iff βx = 1/αx and in this case
a = b = c = L · α

1/3
x .

Proof. The first series of equalities follows immediately from Proposition 8. The last
sentence follows immediately from the first part of the statement.

We call the last case described in Corollary 2 the symmetric case for the 3-CLP and
simply write α for αx = αy = αy per x. Note how, if the bounds for px and py are equal,
this automatically makes the price bounds for py per x “symmetric” in the sense that
βy per x = 1/αy per x. For the remainder of this document, we focus on the symmetric
case. We require α < 1 to ensure that the price bounds are non-degenerate.

Remark 7. In the symmetric case, the price range for any asset pair is equal to [α, 1/α].
More in detail, we have px per z = 1/px and this is tightly within [α/(1/α), 1/α] = [α, 1/α].
Likewise for py per z and px per y.

3.1 Standard Operations (Symmetric Case)

We describe the standard operations for a 3-CLP pool.
13Note that, e.g., αy per x is not usually equal to αx/βy even though py per x = px/py. This is because

the prices px and py cannot assume their extreme values independently of each other. Instead, the price
bounds for py per x correspond to the formulas in Proposition 8.

21

3.1.1 Initialization from real reserves

Initializing a pool from real reserves is less simple than in the 2-asset case, even if the price
bounds are symmetric. To do this, we need to compute L given only the real reserves
x, y, z (and the price bounds). The associated equation (4) is now cubic in L, as opposed
to quadratic like in the 2-asset case. It is easy to see that, in the symmetric case, (4) is
equivalent to

(1 − α)L3 − (x + y + z)α2/3L2 − (xy + yz + xz)α1/3L − xyz = 0.

To initialize the pool, this equation needs to be solved for L. While one could solve
this equation using the cubic formula, doing so requires taking two square roots and two
cube roots, and one also potentially needs to deal with complex numbers. It seems more
feasible to apply a numerical technique like Newton’s method (noting that the derivatives
of the left-hand side are easy to compute). Before deploying any such a method, one
should first carefully study its numerical stability and running time in the context of this
particular class of equations. Otherwise, exploitable errors could result. We discuss the
design of such numerical methods in Appendix A.

As an alternative, a user could compute L off-chain and provide it along with x, y, z

upon initialization. The contract would then simply check if the invariant holds. This
would hurt composability for the operation of starting a new pool, but this seems to be a
sensible trade-off. If there are no fees, none of the other operations require recomputation
of L, as we will see in the following results. If there are fees, one can decide to compound
fees and recompute the invariant on every swap.

3.1.2 Initialization from prices

Given prices px, py, we can initialize a pool in a somewhat analogous way to the 2-CLP.
However, in contrast to the 2-CLP, the prices in the 3-CLP interact and therefore we
cannot choose an arbitrary combination of prices even within the price bounds [α, 1/α].
Instead, another condition has to be considered.

Proposition 9. Fix some α ∈ (0, 1) and let px, py > 0. Consider the condition

pxpy,
px

p2
y

,
py

p2
x

≥ α. (8)

(8) implies that px, py, py/px ∈ [α, 1/α]. If, in any symmetric 3-CLP, we have prices
px and py and liquidity invariant L, then (8) holds and we furthermore have for the
reserves that

22

x = L ·
(

3
√

py/p2
x − α1/3

)
= L ·

(
3
√

pxpy/px − α1/3
)

(9)

y = L ·
(

3
√

px/p2
y − α1/3

)
= L ·

(
3
√

pxpy/py − α1/3
)

z = L ·
(

3
√

pxpy − α1/3
)

= L ·
(

3
√

pxpy − α1/3
)

.

Vice versa, if (8)holds, then for any L > 0 there exists a unique valid reserve state (x, y, z)
of a symmetric 3-CLP with invariant L and prices px, py and it is defined by the above
equations.

Proof. We first show that (8) is sufficient to imply that all prices are within the price
bounds [α, 1/α]. To see this, note that

p3
x = (pxpy)2 px

p2
y

p3
y = (pxpy)2 py

p2
x(

py

px

)3
= (pxpy)

(
py

p2
x

)2

are all ≥ α3 by assumption and also

p3
x =

(
py

p2
x

)−2
(

px

p2
y

)−1

p3
y =

(
px

p2
y

)−2 (
py

p2
x

)−1

(
py

px

)3
= (pxpy)−1

(
px

p2
y

)−2

are all ≤ 1/α3.
Assume now that there is a reserve state with these prices and invariant L. We first

prove the three equalities (9). We have px = z′

x′ and py = z′

y′ and thus x′ = z′/px and
y′ = z′/py and, by the invariant,

L3 = x′y′z′ = z′3

pxpy
.

Rearranging yields z′ = L · 3
√

pxpy. The two price equations above then yield x′ = z′/px =
L · 3

√
pxpy/px and likewise y′ = L · 3

√
pxpy/py. The formulas for x, y, z now follow from

Corollary 2. From these equalities and because x, y, z ≥ 0, it immediately follows that
(8) must hold.

Towards the other direction, assume that (8) holds for some pair of prices px, py and
let L > 0. Choose x, y, z according to (9). By assumption, x, y, z ≥ 0. It is easy to see

23

that (x, y, z, L) satisfy (4) and (via this) that the marginal prices in the pool are indeed
px, py. Uniqueness follows by the first part of the proposition.

Proposition 9 exhibits an interesting symmetry in the reserve values stemming from
the symmetry in price bounds. Specifically, we have xi = L ·

(
n
√

P/pi − α
)

where
P =

∏n
i=1 pi and n is the number of assets. It is easy to see that this holds for any

number of assets n.
Using Proposition 9, computation of the portfolio value

V := pxx + pyy + z

is straightforward, just like in the 2-asset case, as the following proposition shows.

Proposition 10. In a symmetric 3-CLP with price bounds α, prices px, py ∈ [α, 1/α],
and liquidity invariant L, we have

V = L ·
[
3 3
√

pxpy − (px + py + 1)α1/3
]

Proof. Follows by plugging the values for x, y, z from Proposition 9 into the definition of
the portfolio value and simplifying.

It is easy to see that Proposition 10 generalizes to the n-asset case, where we receive
V = L ·

[
n n
√∏

i pi −
∑

i piα
1/n
]
.

3.1.3 Liquidity Update

Updating liquidity is straightforward and analogous to the 2-asset case as well.

Proposition 11. Assume (x, y, z, L) satisfy (4) at prices px, py and let ∆L ∈ [−L, ∞).
Then (x + ∆x, y + ∆y, z + ∆z, L + ∆L) satisfy (4) at prices px, py iff

∆x = ∆L ·
(

3
√

pxpy/px − α1/3
)

∆y = ∆L ·
(

3
√

pxpy/py − α1/3
)

∆z = ∆L ·
(

3
√

pxpy − α1/3
)

.

Proof. Follows immediately from Proposition (9).

Note that, like in the 2-asset case, the composition of assets that enter or leave the
pool is determined by the prices and cannot be chosen by the trader. And just like in the
2-asset case, if the original values are known, we can greatly simplify the way they are
calculated.

24

Corollary 3. Assume (x, y, z, L) satisfy (4) at prices px, py and let ∆L ∈ [−L, ∞). Then
(x + ∆x, y + ∆y, z + ∆z, L + ∆L) satisfy (4) at prices px, py iff

∆x

x
= ∆y

y
= ∆z

z
= ∆L

L
.

Proof. This follows immediately by combining Proposition 11 with Lemma 9. The factor
that only depends on px cancels out.

3.1.4 Trade (Swap) Execution

Executing a trade is analogous to, but conceptually slightly more nuanced than the 2-asset
case because traders may have different needs. Arguably the most common case is when
a trader wants to swap one of the three assets for another one without providing or
receiving any of the third asset. Other traders may also desire/provide a combination of
two assets and provide/receive the third. All of these cases can be covered by solving the
equation

(x′ + ∆x)(y′ + ∆y)(z′ + ∆z) = L3,

which can be done easily and efficiently. A trader would provide two of the three values
∆x, ∆y, ∆z and we calculate the third one so that the invariant holds. In the case where
the trader only wants to swap between a pair of assets, they would set the respective
third ∆x, ∆y, or ∆z to 0. We describe the swap for the case where the trader provides
∆x and ∆y. The other cases are analogous.

Proposition 12. Assume that (x, y, z, L) satisfy (4) and let ∆x ≥ −x and ∆y ≥ −y.
Then (x + ∆x, y + ∆y, z + ∆z, L) satisfy (4) iff

∆z = L3

(x′ + ∆x)(y′ + ∆y) − z′,

if this value is ≥ −z. Otherwise, no such value exists.

Proof. Follows immediately from the invariant (4), just like Proposition (4).

Note that, in contrast to Proposition (4), we cannot compute single bounds x+, y+, z+

up to which one can trade. This is because, whether or not a trade is possible depends
on the combination of values of the two provided ∆ values. For example, we have z = 0
iff z′ = c iff

x′y′ = L3/c

⇔ (x + L · α1/3)(y + L · α1/3) = L2/α1/3.

This is equivalent to saying that (x, y) lies on a 2-CLP with special virtual reserve offsets
L · α1/3 and liquidity invariant L2/α1/6. We obviously cannot simplify this further to

25

static values for x and y.
The most common kind of swap is a swap of one asset against another, where one of

∆x, ∆y, ∆z is 0. In this case, we can slightly simplify the involved operations. This may
be convenient from a technical point of view because it reduces the number of variables
involved in the calculation. We describe the case where asset x is swapped against asset
z and asset y remains untouched. The other swap pairs are of course analogous.

Proposition 13. Assume that (x, y, z, L) satisfy (4) and let ∆x ≥ −x. Then (x +
∆x, y, z + ∆z, L) satisfy (4) iff

∆z = x′z′

x′ + ∆x
− z′ = z′∆x

x′ + ∆x
,

if this value is ≥ −z. Otherwise, no such value exists.

Proof. Follows immediately from Proposition 4. We have

∆z = L3

(x′ + ∆x)(y′ + ∆y) − z′ = x′y′z′

(x′ + ∆x)y′ − z′ = x′z′

(x′ + ∆x) − z′.

The second equality follows by L3 = x′y′z′ and simple algebraic transformation.

Asset y does not occur in the above calculation. Note, however, that the formula still
depends on the invariant L because we need to compute the virtual assets x′ and z′.

3.1.5 Fees

Fees can be included in much the same way as in the 2-CLP (see above): fees of factor
γ are taken on any asset that goes into the pool. One difference is that now there can
either be one or two assets going into the pool. Another is when fees should compound
because re-initializing the liquidity invariant now requires solving a cubic equation (see
Section 3.3). We argue that, despite the increased computational cost, doing so is still
feasible and implies the advantages of compounding fees.

3.2 Optimal Arbitrage

Trading a pair of assets affects the price of the third. Assume, for instance, that a
trader sells x for z. This decreases the amount of the reserve z (and thus of the virtual
reserve z′) while keeping y′ constant and increasing x′, which implies that the three prices
px = z′/x′, py = z′/y′ and py per x = y′/x′ all decrease. For a trader who does not care
which of the two other assets they receive (such as an arbitrageur who believes that only
asset x is mispriced), this is not optimal. Instead, assuming that the price of the third
asset pair (py in our example) is in equilibrium, they have an incentive to trade in such
a way as to keep it the same, as the following result shows. The intuition for this is
that, when the price of the other asset changes, this creates an arbitrage opportunity; the

26

trader misses out on value of the size of this arbitrage opportunity. We state the result
for the case where a trader wants to exchange a fixed amount of x for a bundle of y and
z. It is easy to see that the statement generalizes to any combination of assets.

For a trade (∆x, ∆y, ∆z) let

∆V := − (px∆x + py∆y + ∆z)

be the value of the trade. Importantly, prices are taken before the trade. This captures the
assumption that prices are in equilibrium (at least the assets the trader is not interested
in), but the trader does not care how they change after the trade. Note that ∆V captures
the value of the trade from the perspective of the trader. In contrast, the mechanism
incurs a value difference of −∆V = px∆x + py∆y + ∆z.

Theorem 1. Consider a 3-CLP with symmetric price bounds given by α such that
(x, y, z, L) satisfy (4) and fix an amount ∆x ∈ [−x, ∞). Among all the pairs (∆y, ∆z)
such that (x + ∆x, y + ∆y, z + ∆z, L) satisfy (4), ∆V is maximized iff p1

y = py, where
p1

y is the price of asset y after the trade. This is the case iff

∆z

∆y
= py.

Proof. Note first that, with ∆x fixed, maximizing ∆V is equivalent to maximizing py∆y +
∆z. Consider now a trade where p1

y ̸= py. Then there exists a valid (arbitrage) trade
(∆x1 = 0, ∆y1, ∆z1) such ∆y1, ∆z1 ̸= 0 starting at the state (x + ∆x, y + ∆y, z + ∆z)
and the price p2

y after that trade is p2
y = py. Consider the combined trade ∆x2 := ∆x,

∆y2 := ∆y + ∆y1, ∆z2 = ∆z + ∆z1. We show that the value ∆V 2 of this trade is
higher than the value ∆V of (∆x, ∆y, ∆z). Consider first the case where p1

y < py = p2
y.

Then ∆y1 < 0 < ∆z1 and therefore

∆V 2 − ∆V = py · (−∆y1) − ∆z1 ≥ 0

⇔ py ≥ ∆z1

−∆y1 .

The last inequality holds because, for the trade (∆y1, ∆z1), the left-hand side of the
inequality is the marginal price at the end of the trade and the right-hand side is the
average price across the trade, and the trade consists of buying asset y. The other
direction is analogous.

For the last statement of the theorem, note that

p1
y = z′ + ∆z

y′ + ∆y
!= z′

y′ = py

iff ∆z
∆y = z′

y′ = py. This general result about fractions is easy to see.

27

The statement that it is optimal to preserve the price of the third asset is actually
much more general than stated and holds in any AMM that has sensible properties in
some basic sense. This follows using the same proof as Theorem 1 because the proof only
makes use of very general properties of the AMM (such as that selling an asset depresses
the price). How a trader achieves this (i.e., the last part of the theorem) depends on
the details of the AMM in question. Observe that, under the condition of the theorem,
py∆y = ∆z, i.e., the values of the two assets provided/received are the same. This
echoes the property of the CPMM (without virtual reserves) whereby the three assets
enter into the reserve with equal values.

3.3 Implementation (Symmetric Case)

The implementation should follow a similar structure as the 2-asset version and store the
following items:

• The constant α1/3, either computed on the fly or provided and verified at construc-
tion of the pool.

• The liquidity invariant L (unless it is still more efficient to re-compute it each time).

• The real reserves x, y, z.

As before, the virtual reserves x′, y′, z′ can be easily computed from these values. Similar
to the 2-CLP, the root 3

√
pxpy can be efficiently computed from the tracked variables.

Lemma 10. 3
√

pxpy = L2

x′y′ = z′

L .

Proof. By the invariant, we have z′ = L3/(x′y′) and thus

pxpy = z′

x′ · z′

y′ = L3

x′2y′ · L3

x′y′2 = L6

x′3y′3 .

This implies the first equality. The second follows by

L2

x′y′ = L2z′

x′y′z′ = L2z′

L3 = z′

L
.

Initializing the pool from a price requires actually computing the expression 3
√

pxpy.
Different methods, such as Newton’s method, binomial expansion, or conversion to a pair
of log/exp expressions can be used towards this task. To initialize the pool from the real
reserves x, y, z, a cubic equation needs to be solved (see Section 3.1.1).

28

A Numerical Methods to Compute the Invariant in the
3-Asset Case

Recall from Section 3.1.1 that computing the invariant from real reserves in the 3-asset
case amounts to finding a non-negative solution the following equation:

(1 − α)L3 − (x + y + z)α2/3L2 − (xy + yz + xz)α1/3L − xyz = 0.

Assuming WLOG that x, y, z > 0 (otherwise, the problem becomes quadratic), this is
obviously a cubic equation of form14

f(L) := aL3 + bL2 + cL + d = 0,

a > 0,

b, c, d < 0.

We discuss the properties of such equations and two methods for solving them. Note that
the coefficients a–d can be easily computed assuming that α1/3 is available. This could
be precomputed or computed once at the beginning of the operation, whatever is more
gas-efficient.

A.1 Shape of the function f

We first argue that the function f always exhibits the general shape depicted in Figure 1.
First consider the derivatives of f :

f ′(L) = 3aL2 + 2bL + c

f ′′(L) = 6aL + 2b.

Observe that
f ′′(L) = 0 ⇔ L = LM := −b

3a
.

Since b < 0 < a, we have LM > 0 and f ′′(L) < 0 if L < LM and f ′′(L) > 0 if L > LM.
Furthermore, we have

f ′(L) = 0 ⇔ L = L+,− :=−b

3a
±

√
b2 − 3ac

3a

=LM ±
√

L2
M − c

3a
.

Since c < 0, this equation has two different solutions and L− < 0 < L+, and by the
above discussion of f ′′, L− is a local maximum and L+ is a local minimum. Since
c < 0, L− < 0 < L+. Since f(0) < 0 (and there are no other extrema but L− and L+),

14For this section, a, b, c do not refer to the virtual reserve offsets.

29

Figure 1 Cubic function f for x = y = z = 1 and α = 0.7. The gray line marks the local
minimum L+.

5 10 15
L

-50

50

100

150

200

250

300

f(L) < 0 ∀L ∈ [0; L+]. Since there are no further roots of f ′, f is strictly increasing on
[L+; ∞). Therefore, f has a unique root L∗ in [0, ∞) and L∗ > L+. Since L+ > LM, f

is also convex on [L+; ∞).

A.2 Finding the root L∗ via Newton’s method

The shape of the function f lends itself well to Newton’s method. Consider a sequence of
Newton iterations (Ln)n. If Ln > L∗ then by monotonicity and convexity Ln > Ln+1 >

L∗. Thus, Newton’s method converges whenever one of the steps Ln lies above L∗.
Furthermore, if Ln ∈ [L+, L∗], then by monotonicity and convexity Ln+1 > L∗. Therefore
and extending the previous argument, Newton’s method converges whenever it is started
at some point in L0 ≥ L+. To find such a point, it seems unavoidable to compute L+

using a square root. Once L+ is available, experiments have shown that L0 := 1.5 · L+

yields a good first approximation of L∗ unless α is very small (see Figure 2). Note that
an extremely small value of α would likely not be chosen; here, the mechanism would be
similar to a CPMM with three assets and without virtual reserves and one is likely better
off using that simpler mechanism instead.

Experimentally, when accuracy is not limited by fixed-point numbers and other
constraints, 5–7 Newton steps always achieve an error bound of 10−18, measured in terms
of the error in the values x, y, z when they are reconstructed using Proposition 9 using the
current value for L. When only 18 decimal places are available for intermediate results
during calculation, the ultimate error is larger. The accuracy of the method also depends
on α, with higher α values leading to lower accuracy. Experimentally, we found that the
method provides sufficiently accurate results for all realistic values of x, y, z, and α.

A.3 Convergence Speed, Stability, and Stopping Criterion

Realistic values are that x, y, z are in the millions to potentially billions and α is very
close to 1, e.g., α = 0.9995. For these values, the function f becomes very steep (see

30

Figure 2 Quotient L∗/L+. The initial approximation 1.5 · L+ lies at 1.5 on the Y axis.
Observe that, unless α is very small, the initial approximation is reasonably close to L∗. In
the most relevant case, where α is close to 1 (around 0.95, say), the initial approximation
is very accurate. For α → 1, the initial approximation becomes exact in relative terms.
Note that α = 1 is not valid. The figure is for x = y = z = 1. Experiments have shown
that the shape of this curve and accuracy of L0 are very stable under different choices for
the real reserves x, y, z, unless α is chosen very small.

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
1.

1.25

1.5

1.75

2.

2.25

2.5

2.75

3.

α

L *
/
L +

Figure 3 for a plot of f for large values of these parameters), implying that Newton’s
method converges rapidly. At the same time, f(L) is very sensitive to errors in L. Note,
however, that we fundamentally are not interested in the relative error |f(L)| but rather
in the absolute error |L − L∗|, which is why this sensitivity does not imply that we need
to know L∗ at a higher accuracy than would otherwise be desirable. In addition, while
Newton’s method converges from the right, for our application it is important to slightly
underestimate L, since this will be more advantageous for the pool’s reserves. Overall,
this is why the following stopping criterion has proven effective: Iterate until (1) either
the step size decreases by less than a factor 10 in a step or (2) the steps Ln increase
rather than decrease.15 Finally, to make sure we end up to the left of the invariant, make
another step of the same size downwards, i.e., the final result is Ln − |Ln−1 − Ln|.

A.4 Lower-order case

When one of x, y, z is 0, then d = 0 and thus f(L) = 0 if L = 0 or

aL2 + bL + c = 0.

This is of course the case iff

L = −b

2a
±

√
b2 − 4ac

2a
.

15The second test checks for the influence of rounding errors. Note that this case happen mathematically
(except in the first step), which tell us that the influence of rounding errors has become so large that
further steps would not be informative.

31

Figure 3 Cubic function f for x = y = z = (2, 3, 2) · 109 and α = 0.9995. The gray line
marks the local minimum L+.

5.0×1012 1.0×1013 1.5×1013 2.0×1013 2.5×1013
L

1 × 1036

2 × 1036

3 × 1036

Since x, y, z ≥ 0, we have b, c ≤ 0 (and we always have a > 0), so that these terms are
always defined and the “+” solution is non-negative, so that the maximal solution to
f(L) = 0 is non-negative and is equal to

L∗ = −b

2a
+

√
b2 − 4ac

2a
.

If at least one of x, y, z is positive, then L∗ > 0. If x = y = z = 0, then L∗ = 0.

A.5 Future Work: Higher-order methods

To further increase convergence speed, information about the second derivative could
be included. This can be easily done using Halley’s method, in which the tangent is
replaced by the linear/linear Padé approximation as a local approximation of the function
in question. Halley’s method may provide better convergence, but it is not clear what
its stability is compared to Newton’s method. Anecdotally, Halley’s method saves 1–2
iterations over Newton’s.

A.6 Discussion: Finding the root L∗ via the cubic formula?

Of course, a cubic equation can also be solved using the cubic formula. However, while this
is generally possible, it appears infeasible using the methods currently available on-chain.
As an exercise towards potential future work, we discuss how one might approach this.
Let

p := −b

3a

q := p3 + bc − 3ad

6a2

r := c

3a

s := q2 +
(
r − p2

)3
.

32

Figure 4 Region of (x, y) pairs where s ≥ 0. We have fixed z = 1 and α = 0.7. Smaller
α values lead to a larger region and larger α values lead to a slightly smaller region (but
the region does not disappear for α → 1).

0 2 4 6 8 10

0

2

4

6

8

10

x

y

s ≥ 0

Then the solutions to the cubic equation are

3
√

q +
√

s + 3
√

q −
√

s + p, (10)

where all possible 3rd roots need to be considered to receive all possible solutions.16 It is
important to note that complex numbers can occur in intermediate steps of the calculation
even if the end result is real. In particular, we cannot assume that s is non-negative.
More in detail, observe that p, q > 0 and r < 0 by the signs of the coefficients. Thus,(
r − p2)3 < 0 and s can be positive or negative.17

By the above discussion on the shape of f , the above term can take on exactly one
non-negative value L∗. To find it, we only need to perform a limited number of operations
on complex numbers. We distinguish two cases.

Case 1: First assume that s ≥ 0 so that √
s is real. Since

(
r − p2)3 < 0, √

s < q

and thus q −
√

s > 0. It follows that all radicands are non-negative and thus all roots are
real. We need to compute one square root and two third roots to compute L∗ via (10).

Case 2: Now assume that s < 0. Then √
s is purely imaginary (i.e., a multiple of

i) and thus q +
√

s and q −
√

s are conjugate mixed complex numbers. Observe that
q +

√
s = q + i

√
−s is in the first quadrant of the Cartesian plane. Note that this s < 0

case is common and cannot be ignored in practice; to see this, consider Figure (4), which
shows the “easy” region where s ≥ 0 for an example choice of the other parameters.

To calculate the cube roots in (10), it seems that there is no other way than using
16In contrast, we do not need to consider the two possible square roots of s, because of symmetry.

WLOG denote by
√

s the positive (or positive-imaginary) root.
17This can not only happen in general, but also in our specific context: let α = 0.7, x = y = 1, and

z = 0.1. Then calculation shows that s ≈ −2.025.

33

polar coordinates. Let φ = arctan(
√

−s/q) and observe that |q +
√

s| =
(
q2 − s

)1/2

(this does not need to be calculated), so we have

q +
√

s =
(
q2 − s

)1/2
· eiφ

q −
√

s =
(
q2 − s

)1/2
· e−iφ.

Let now t =
(
q2 − s

)1/6. Then we can consider the (specific) third roots

3
√

q +
√

s = t · eiφ/3

3
√

q −
√

s = t · e−iφ/3.

Since these are again complex conjugates of each other, their imaginary parts will cancel
out and (10) is equal to

2ℜ
(

3
√

q +
√

s

)
+ p = 2t cos(φ/3) + p.

Overall, we receive

L∗ = 2 ·
(
q2 − s

)1/6
· cos

(
1
3 · arctan

(√
−s

q

))
+ p.

Overall, in this case, we need to compute a square root, a sixth root, an arc tangent, and
a cosine. While the case s ≥ 0 case appears somewhat acceptable to compute on-chain,
the need to deal with trigonometrics in the s < 0 case makes this approach unattractive
for implementation on-chain.18

B Marginal Trading Curves and Capital Efficiency of the
3-CLP

We study the trading curves offered by the 3-CLP for two of the assets when we hold
the third asset fixed. We call this the marginal trading curve. This will then allow us to
compare the 2-CLP to the 3-CLP in terms of capital efficiency.

We first show that the marginal trading curve of a 3-CLP is equivalent to a 2-CLP with
price bounds dependent on the third asset. The following theorem shows this when the
third asset is y; the other cases are of course symmetric. We only consider the symmetric
case. Recall that the offsets are a = b = c = Lα1/3.

Theorem 2. Consider a symmetric 3-CLP with price bound parameter α, assets x, y, z,
and invariant L, and consider the curve of points (x1, z1) such that (x1, y, z1) satisfies

18To the best of our knowledge, no on-chain implementation is currently available for the arc tangent.

34

Equation (4). This is the same curve as the trading curve of a 2-CLP with assets (x, z)
and price bounds [γ, γ−1] where

γ = α2/3 · y + a

L
= α2/3 ·

(
y

L
+ α1/3

)
. (11)

Proof. The marginal trading curve of the 3-CLP is

(x1 + a)(y + a)(z1 + a) = L3

⇔ (x1 + a)(z1 + a) = L3

y + a

The trading curve of the above-mentioned 2-CLP is

(x1 + γ1/2L′)(z1 + γ1/2L′) = L′2

where L′ is such that it solves the equation for x1 = x and z1 = z. To show that the two
curves are equal, it is sufficient to show that L′ =

√
L3

y+a is this solution.19 To see this,
note that the offset on the left-hand side is

γ1/2L′ =
√

γ
L3

y + a
=
√

α2/3L2 = α1/3L = a

and the right-hand side is

L′2 = L3

y + a
= (x + a)(y + a)(z + a)

y + a
= (x + a)(z + a).

Intuitively, the above theorem implies that the higher the contribution of asset y to
the invariant L compared to the other assets, the tighter the price bounds of the marginal
trading curve will be. We cannot easily state this relationship analytically because the
closed-form expression for L is rather complicated. However, we can understand some
special cases analytically:

Proposition 14. Consider the price bound parameter γ of the marginal 2-CLP curve
from Theorem 2. Then the following hold:

1. If y = 0, then γ = α.

2. If x = y = z, then γ = α2/3.

3. In the limit for y
x , y

z → ∞, γ → 1.

Proof. 1. This follows directly from the second form in (11).
2. If x = y = z, then (4) is equivalent to

(y + a)3 = L3

19Recall that the solution is always unique.

35

and thus y+a
L = 1. The statement now follows from the first form in (11).

3. First recall that, when all assets are scaled by some factor, then this also scales L

by the same factor and the factor cancels out in the term y+a
L . Therefore, we can WLOG

assume that y is constant and x, z → 0. By continuity, it is enough to consider γ for the
limit case where x = z = 0.20 Here, (4) simplifies to

a2(y + a) = L3

⇔ α2/3L2(y + a) = L3

⇔ y + a

L
= α−2/3.

The statement now follows from (11).

2-CLP vs 3-CLP and Capital Efficiency. We can use the above results to compare
two alternative ways of providing liquidity. Assume that we want to provide liquidity in
two asset pairs: X–Z and Y–Z. Assume that prices in both of these pairs are usually
around 1 and we want trades to be on a 2-CLP curve with price bounds [γ, γ−1] and with
a market depth of x = y = z in all assets. We have at least two options to do this:

1. Create two 2-CLP pools with price bounds [γ, γ−1], one for the X–Z pair and one
for the Y–Z pair, and initialize them with equal amounts of each asset, so that the
prices in both pools are 1. The total capital required for this is x units of asset X
and Y, respectively, and 2x units of asset Z.

2. Create a single 3-CLP pool with price bound parameter α = γ3/2 and initialize
it with equal amounts of each asset, so that both the x–z and y–z relative price
are 1. By Proposition 14, this will yield the desired price bounds for the x–z and
y–z marginal trading curves whenever trading starts at a point where the three
assets have equal amounts (i.e., where both relative prices are 1). The total capital
required is of course x units of asset X, Y, and Z, respectively, i.e., we save 50% of
the capital for asset Z.

The 3-CLP pool requires less capital of asset Z because it uses its asset-Z capital for
trading against both asset X and Y. We receive essentially the same trading behavior as
with the two 2-CLPs, but with less capital use, if a few assumptions are satisfied:

1. The relative prices in the pool are close to 1 most of the time.

2. Traders do not want to trade large amounts of both assets Y and Z in the same
direction at the same time.

20Of course, for x = z = 0, there is no marginal trading curve and the question regarding price bounds
is moot. However, the limiting γ still exists and price bounds of the trading curves for positive x, z
will converge to this limit. To receive continuity of the whole operation, we formally need to use the
previously-proven fact that (4) has a unique non-negative solution, and we use continuity of both sides of
this equation.

36

These assumptions will be satisfied for many market making use cases, where trades are
generally small, arbitrage is quick, and traders and arbitrageurs trade roughly equally in
both directions. However, it should be noted that the 3-CLP offers less asset-Z liquidity
overall and will therefore be exhausted more quickly when large correlated trades are
performed in both asset X and Y.

We can extend the argument to an analogous setting where we want to allow trading
between all three asset pairs, X–Y, Y–Z, and X–Z. In this case, by the argument above,
the 3-CLP enables 50% savings in capital in each of the three assets X, Y, and Z compared
to a setup with three 2-CLP pools.

References

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.
Uniswap v3 core. Technical report, Tech. rep., Uniswap, March 2021. URL https:

//uniswap.org/whitepaper-v3.pdf.
Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market

makers. Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
Oct 2020. URL http://dx.doi.org/10.1145/3419614.3423251.

Ariah Klages-Mundt and Steffen Schuldenzucker. Prices in higher-dimensional and
transformed constant-function market makers. mimeo, 2021.

Disclaimer

This paper is for general information purposes only. It does not constitute investment
advice or a recommendation or solicitation to buy or sell any investment and should not be
used in the evaluation of the merits of making any investment decision. It should not be
relied upon for accounting, legal or tax advice or investment recommendations. This paper
reflects the current opinions of the authors and is not made on behalf of Superluminal
Labs or its affiliates and does not necessarily reflect the opinions of Superluminal Labs, its
affiliates or individuals associated with Superluminal Labs. The opinions reflected herein
are subject to change without being updated.

37

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
http://dx.doi.org/10.1145/3419614.3423251

	Preliminaries
	2-asset variant
	Choosing Virtual Reserves
	Standard Operations
	Initialization from real reserves
	Initialization from price
	Liquidity Update
	Trade (Swap) Execution

	Integrating Fees
	Swaps with Fees
	Slippage and Normalized Liquidity
	Compounding Fees and Keeping the Invariant Implicit
	Accounting for LP Shares
	Protocol Fees

	Implementation

	3-asset variant
	Standard Operations (Symmetric Case)
	Initialization from real reserves
	Initialization from prices
	Liquidity Update
	Trade (Swap) Execution
	Fees

	Optimal Arbitrage
	Implementation (Symmetric Case)

	Numerical Methods to Compute the Invariant in the 3-Asset Case
	Shape of the function f
	Finding the root L* via Newton's method
	Convergence Speed, Stability, and Stopping Criterion
	Lower-order case
	Future Work: Higher-order methods
	Discussion: Finding the root L* via the cubic formula?

	Marginal Trading Curves and Capital Efficiency of the 3-CLP

