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Abstract

We present a general framework for computing prices in constant-function auto-
mated market makers (CFMMs) based on the derivatives of the defining functions.
This is essentially an application of the implicit function theorem but presents a much
more convenient and error-resistant way to compute prices compared to manual
calculation. We then apply our basic result to discuss how prices change when a
CFMM curve is transformed by another function. This is convenient for introducing
virtual reserves to increase capital efficiency and it provides an intuitive geometric
approach for distorting curves to change how the AMM price reacts to demand and
supply.

1 Computing CFMM prices from partial derivatives

Consider a function f : Rn → R. f is the level function used in a CFMM to be analyzed
in the following and n is the number of assets. For example, for the constant-product
market maker (CPMM), f(x) =

∏n
i=1 xi. A particular AMM curve is a level surface of

form Lk := {x ∈ Rn | f(x) = k} where k ∈ R. WLOG we single out xn as the numéraire,
i.e., all prices will be denoted in units of xn. We are interested in the prices pi := −dxn

dxi
,

where the derivatives are with respect to the surface Lk. This means that pi indicates, in
marginal terms, by how much, starting at a given point x, the xn dimension needs to
change if the xi dimension changes by one infinitesimal unit, the other dimensions (except
for xi and xn) do not change and we want to stay on the surface Lk. Note that, while pi
generally depends on k, k = f(x) is fully determined by the point x. Furthermore, there
are in principle choices for f where derivative does not exist (such as f(x) = 1), but all
functions that are actually used for AMMs do have such a derivative if the original point
x is valid.

To compute these prices, we consider the partial derivatives ∂f
∂xi

, where the derivatives
are now not taken with respect to any surface but in the regular sense of varying xi while
keeping all other coordinates constant. These partial derivatives are easy to compute for
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almost all CFMMs used in practice.1 The following theorem provides a convenient way of
computing the prices pi.

Theorem 1. The prices of a CFMM with level function f at a point x are

pi =
∂f
∂xi

∂f
∂xn

.

Proof. This immediately follows from the implicit function theorem applied to the function
g(xi, xn) := f(x1, ... , xi−1, xi, xi+1, ... , xn−1, xn).

1.1 Calculation Rules

We now discuss some simple calculation rules for prices. Define, as a generalization of pi,
the value pj per i := −dxj

dxi
. This is the price of asset i measured in units of asset j. Note

that pi = pn per i. Then the following hold:

1. pj per i = pi/pj

2. pj per i = 1/pi per j .

This follows immediately from the obvious generalization of Theorem 1 to arbitrary
numéraires and (then) simple algebraic transformations. In general, we have for all i, j, k
that

dxj
dxi

= −dxk
dxi

/dxk
dxj

.

1.2 Examples

2-dimensional CPMM. Consider the constant-product market maker (CPMM) in two
dimensions. Let n = 2 and, to make notation more standard, rename x to t and write
x := t1 and y := t2. The invariant of the 2-dimensional CPMM is f(x, y) = xy. We
obviously have ∇f = (∂f∂x ,

∂f
∂y ) = (y, x) and thus px = y/x as expected.

Higher-dimensional CPMM. Consider the CPMM in any number of dimensions, where
f(x) =

∏
i xi. We have ∂f

∂xi
=
∏
j 6=i xj and thus pi =

∏
j 6=i xj

/∏
j 6=n xj = xn/xi

since all other xj cancel out. Note how the marginal prices are the same as in a 2-
dimensional CPMM. This is intuitive because, holding all xj for j 6= i, n fixed, the
invariant is xixn = k/

∏
j 6=i,n xj , corresponding to a 2-dimensional CPMM with invariant

k/
∏
j 6=i,n xj .

1An exception here may be StableSwap, which cannot be described well using a CFMM form. Angeris
and Chitra (2020) present a CFMM form, but the shape of that form of the AMM is only preserved when
its parameters are adjusted based on the level k. This might make it harder to apply our theory.
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Example: CPSMM. Consider the constant power-sum market maker (CPSMM) in
two dimensions f(x, y) = xδ + yδ, where δ := 1− γ and γ ∈ [0, 1) so that δ ∈ (0, 1]. We
have ∇f = (δxδ−1, δyδ−1) and thus px = xδ−1/yδ−1 = x−γ/y−γ = yγ/xγ . We can see
from the prices that the AMM is just constant-price for γ = 0 converges to the CPMM
for γ → 1.2

2 Transformations of CFMMs

We now study how prices change when an AMM curve is transformed by another function.
Let F : Rn → Rn be a differentiable function and consider g := f ◦ F .3 Again, we
are interested in the prices pi, but this time under g, where we would like to re-use our
knowledge about f . Denote by pf the price vector under f and by pg the price vector
under g. Note that pfn = pgn = 1. The following theorem provides a way of translating
prices in f to prices in g.

Theorem 2. The prices in a CFMM according to g = f ◦ F are

pgi (x) = ∇f(F (x)) ·DF (x)ei
∇f(F (x)) ·DF (x)en

= pf (F (x)) ·DF (x)ei
pf (F (x)) ·DF (x)en

.

Here, DF (x) =
(
∂Fi(x)
xj

)
i,j

is the total derivative (i.e., the Jacobian matrix) of F at
x.

In the statement of the theorem, the products in the numerators and denominators,
respectively, are scalar products of vectors while the fractions themselves denote ordinary
divisions. Observe further that DF (x)ei =

(
∂Fi(x)
xj

)
j
is simply the i-th column of the

Jacobian.

Proof of Theorem 2. The first equality follows immediately from the chain rule and
Theorem 1. More in detail, we have

∂g

∂xi
= ∇f(F (x)) ·DF (x)ei

by the multi-dimensional chain rule. Replacing this into Theorem 1 yields the statement.
The second equality follows by replacing all terms pfi based on Theorem 1: we receive
pf = 1

/ ∂f
∂xn
· ∇f and the scalar factor ∂f

∂xn
cancels out.

Remark 1. In the following special cases, the statement of the theorem simplifies further:
2This was first noted in the YieldSpace whitepaper, see: https://yield.is/YieldSpace.pdf.
3Note that the level sets Lk change according to F−1 (which is a function if F is invertible or a

correspondence if it is not). This is because g(x) = k iff F (x) ∈ f−1(k) iff x ∈ F−1(f−1(k)). In practice,
F often is invertible and this means that the level sets under f are transformed by the function F−1 to
receive the level sets under g.
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• If F =: A is a linear transformation, then DF (x) = A, so the above formulas
become

pgi (x) = pf (F (x)) ·Aei
pf (F (x)) ·Aen

.

Note that the prices only depend on F (x), but not on x directly anymore. This
can considerably simplify the analysis.

• If F (x) = x+v where v is constant (i.e., F encodes an offset), then DF (x) = I, the
identity matrix. It is easy to see that Theorem 2 now implies that pgi (x) = pfi (F (x)),
i.e., the prices simply shift according to F .

There is one other important instance where we receive a simplified version of the
formula, namely when the offset is not constant, but it only depends on its own level set,
not on the individual point on the level set. This is important for the analysis of CFMMs
with virtual reserves.

Theorem 3. Let g = f ◦ F where F (x) = x+ v(x) and v : Rn → Rn is constant across
each level set of g, i.e., ∀x, x′ : g(x) = g(x′)⇒ v(x) = v(x′). Then

pgi (x) = pfi (F (x))

Proof. To simplify the notation, assume WLOG that n = 2 and i = 1. Fix some reserve
state x and let k = g(x). The implicit function theorem tells us that there is some
neighborhood U around x1 and some differentiable function ϕ : U → R such that
g(x′1, ϕ(x′1)) = g(x) ∀x′1 ∈ U . We have pg1(x) = −dϕ(x′1)

dx′1
(x1).

Consider the function g′(x) := f(x + v(k)) where v(k) is treated as a constant
independent of the input of g′. Let ϕ′ be the implicit function implied by g′. Clearly,
g 6= g′, but by choice of ϕ′ we have g(x′1, ϕ(x′1)) = g(x) = g′(x′1, ϕ(x′1)). By uniqueness,
ϕ = ϕ′ in a neighborhood around x1 and therefore also −dϕ(x′1)

dx′1
(x1) = −dϕ′(x′1)

dx′1
(x1) =

pfi (x+ v(k)) = pfi (F (x)).

Remark 2. One can apply Theorem 3 to transform a CFMM f into a variant with virtual
reserves to achieve some property of the transformed prices (usually specific price bounds).
To do this, one considers v(k) as a function of the level set k, applies Theorem 3 to
receive the transformed price and one can then often back out what v would have to be
to achieve the desired properties.

To show that the resulting function k 7→ v(k) gives rise to a well-defined CFMM, one
then has to show that the equation

k = f(x+ v(k))

has a unique solution k for any x (among the permissible values of k; usually k ≥ 0 is
assumed). This is specific to the base CFMM f and the function v(k).
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The resulting function g is then rather complicated because it includes the computation
of the above solution k. Specifically, let k(x) be that solution. Then g(x) = f(x +
v(k(x))).

2.1 Examples

Scaling the CPMM.
Let f(x, y) = xy be the 2-dimensional CPMM and let F (t) := At := λt, where λ > 0

is some value and we write t = (x, y) to make the notation more standard. As this is a
linear transformation, we receive by Remark 1

pgx(t) = pf (At) ·Aex
pf (At) ·Aey

=
(λyλx , 1) · (λ, 0)
(λyλx , 1) · (0, λ)

= λ · y/x
λ

= y/x = pfx(t).

Note that the prices have not changed due to this transformation! This may be intuitive
given that we have scaled both reserves by the same amount.

Consider now a variant of this where F (t) := At := (λx, y), i.e., only the x dimension
is scaled. We have

pgx(t) = pf (At) ·Aex
pf (At) ·Aey

=
( y
λx , 1) · (λ, 0)

( y
λx , 1) · (0, 1) = λ · y/(λx)

1 = y/x = pfx(t).

Again, the prices have not changed. This may be surprising and one may have expected
that the price px is either multiplied or divided by λ. However, we can see that this must
hold by directly looking at the function f ◦A: we have g(t) = f(At) = λxy. First note
that the mechanism cannot “differentiate” between whether we scaled x or y. Formally,
if Bt := (x, λy), then f ◦A = f ◦B. Therefore, also the prices must be equal for these
two functions, so that the “direction” of the scaling must necessarily get lost. Second,
note that f(At) = k iff f(t) = k/λ. This implies that the level sets Lk are preserved by
this transformation, even if their labels change. Formally, two points t, t′ are in the same
level set with respect to f iff they are in the same level set with respect to g.

The above preservation result may be surprising when one considers an operation
where the denomination of (say) asset x is (say) “cents” while asset y is denoted in
“dollars”. Obviously, if we replace x by 100x, then the price y/x changes by a factor
1/100. However, the above result does not contradict this. Instead, what it means is that,
if asset x is to be denoted in cents rather than dollars, one can express this by scaling.
However, one can alternatively also simply use the prices provided by the CPMM that lie
at a different (then usually very “unbalanced”) part of the reserve space.

Note that the aforementioned invariance under asymmetric scaling is inherent to the
CPMM and should not be expected from any other AMM. For instance, for the trivial
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constant-sum AMM, f(t) = x+ y, scaling x by λ 6= 1 yields

pgx(t) = (1, 1) · (λ, 0)
(1, 1) · (0, 1) = λ 6= 1 = pfx(t) = pfx(At).

Here, no equivalence like the above exists.
It would be interesting to understand if the CPMM is the unique AMM with this

strong form of “scale invariance” and how this relates to the folk theorem that the CPMM
“spreads its liquidity equally over the whole range of prices”
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