
3-CLP Numerical Guarantees
by Steffen Schuldenzucker
August 23, 2022

We show that the calculations in the 3-CLP can't overflow and have low error given
certain bounds on the balances and parameters. Thus, the numerical operations don't
need to do overflow checks and we can use the *U() functions. We also show that the
divDownLarge() functions only have small error. Most of the work is spent on the
Newton iteration.

Contents:

1 Definitions
2 Overflow Bounds for Operations
3 Error Bound for `divDownLarge()`
4 Assumptions
5 Operations outside `calcNewtonStep()`
6 `calcNewtonStep()`

1 Definitions
By a scaled value, we mean a raw uint256 in memory. By an unscaled value, we mean
the value that this variable represents. Scaling is by 1e18, so we write [x] := scale(x)
:= x * 1e18. Unless explicitly indicated, we refer to unscaled values in this document.

Note that we only use unsigned 18-decimal uint256 value in the 3-CLP code. So an
unscaled value x is representable iff [x] ≤ 2^256-1 ≤ 1.15e77 or equivalently x ≤
1.15e59.

2 Overflow Bounds for Operations
The add and sub functions have the obvious over/underflow bounds: the result needs
to be in the interval [0, 1.15e59]. This condition is usually rather weak and implied by
any other bounds we have on these values (which make sure that, e.g., multiplication
and division work). This is why we will not usually discuss addition and subtraction
explicitly below. For subtraction, we need to ensure, of course, that it does not
underflow at 0. See the comments in the code for this.

The multiplication and division functions have different bounds (this is easy to see; see
also the documentation of these functions):

mulDown(a, b): a * b ≤ 1.15e41. (the actual bound is (2^256-1)/1e18^2) ≥
1.15e41)
divDown(a, b): a ≤ 1.15e41. (the actual bound is the same as above)
mulDownLargeSmall(a, b): a * b ≤ 1.15e59 and b ≤ 1.15e41.
divDownLarge(a, b, d, e): a * [d] ≤ 1.15e59 and b ≥ [e] * 1e-18.

It is easier to think about the parameters d and e in their scaled form.
By default, [d] = 1e9 so that we need a ≤ 1.15e50.

Clearly, the *Large* functions allow bigger values than their regular counterparts.

Note that we always have divDown(a, b) ≤ a * 1e18. This is because the smallest
representable number is b = 1e-18. Checking for overflows in divDown() therefore also
implies a (rather weak) bound on the result.

Also note that the multiplication and division functions interact as follows: at the end of
computing a product, we divide by 1e18 whereas the beginning of a division inflates
the dividend by 1e18. Therefore, when a product can be safely computed via
mulDown(), we can also divide this product again via divDown() by some other value
without worrying about overflow (as long as we add a small margin for numerical
errors).

3 Error Bound for divDownLarge()
The "large" variant of multiplication, mulDownLargeSmall() has error on the order of
1e-18 like the other operations (but it uses twice the space and the number of
operations). In contrast, divDownLarge() only has this order of error within some range
of inputs.

Specifically, divDownLarge() is defined as follows:

where * is regular integer multiplication and Math.div{Up,Down} are rounding-down
and rounding-up version of integer division. Recall that we require [d] * [e] = 1e18,
i.e., d * e = 1e-18. [d] = 1e18 and [e]=1 correspond to the regular divDown
operation.

Let ε := 1e-18. The truncation in Math.divUp([b], [e]) introduces an error of at most
scaled +[e], i.e., unscaled +[e] * ε, into what would be the real quotient [b]/[e]. The
integer multiplication in the numerator does not introduce any error.

[divDownLarge(a, b, d, e)] = Math.divDown([a] * [d], Math.divUp([b],

[e]))

We now study the error in divDownLarge(). Write short for Math.divDown (integer
division truncating at 1, rounding down) and for Math.divUp and note that
multiplication is exact as long as it doesn't overflow. Write / for regular division without
rounding, yielding a real number. Write “ ” and “ ” as one-sided versions of
“±ε”. We have

where in the last line, we expanded the fraction by and exploited the fact that we
require . By dividing by , we transition to the unscaled version
and receive

where the second line is by canceling a factor e-18 on both sides of the fraction. We
ignore the (additive) error (which is on the order of the other numerical
operations) for now and consider the error introduced by the in the numerator.
Obviously, this error is larger when e is large, i.e., when d is small. Note that there is
thus a trade-off between the maximum possible size of a and the accuracy of the
operation.

Note: Formally, our error estimation is slightly loose because the error of the integer
division operations “ ” and “ ” is not always as big as 1. For example, if , the
error is 0 because integer division by 1 is a no-op, and if , the error is at most 0.5,
not 1, because the dividend of “ ” is integer. We ignore this effect because we
receive an upper bound on the error in any case and also the effect is insignificant for
larger values of e, which are the relevant values here.

Note that divDownLarge only has a downwards and no upwards error and the
maximum absolute error due to the e error is

Here we have bounded , which will be a very tight bound in all situations we
consider.

⊘↓

⊘↑

{+ε} {−ε}

[divDownLarge(a, b, d, e)] = ([a] ∗ [d]) ⊘↓ ([b] ⊘↑ [e])
= ([a] ∗ [d]) ⊘↓ ([b]/[e] {+1})

=
[a] ∗ [d]

[b]/[e] {+1}
{−1}

=
[a] ∗ [1]

[b] {+[e]}
{−1}

[e]

[e] ∗ [f] = 1e18 = [1] [1]

divDownLarge(a, b, d, e) =
[a]

[b] {+[e]}
{−ε}

=
a

b {+e}
{−ε}

{−ε}

{+e}

⊘↓ ⊘↑ [e] = 1

[e] = 5

⊘↑

a

b
−

a

b + e
=

a

b
⋅

e

b + e
≤

a

b2
⋅ e

b + e ≥ b

The value that results from the divDownLarge() function is equal to the real value
computed by the function above, truncated to 18 decimals. Thus, in principle, if the
error above is less then 1e-18, it should disappear in the final result. However, in
practice, we need to keep in mind that all operations are performed in binary, not
decimal arithmetics. Therefore, the real threshold where the error vanishes is slightly
smaller than 1e-18.

4 Assumptions
We require that the following hold at all times (unscaled values). This is ensured in the
code prior to any operation that uses these values. Here l refers to any (starting or
intermediate or final) value of the invariant that occurs over the course of the
algorithm:

α ≤ 0.9999
This implies a = 1 - α ≥ 1e-4

α ≥ 0.004
x, y, z ≤ 1e11
l ≤ 4.86e16

This bound is not in principle needed because all L values that actually occur
are bounded by 4.01e15 as a consequence of other bounds (see below). It's
purely a safety measure.
To be safe, the code uses the bound 1e16.

l / L+ ≥ 1.3
This is also not in principle needed because we should always have l / L+ ≥
1.5 (see below). So this is also purely a safety measure.
This condition will ensure that dfRootEst is not too small, which could make
l too large and (more importantly, b/c l itself is checked anyways) also make
divDownLarge imprecise when l is very large.

In addition, we change how some operations are done when l > 2e13. This is slightly
below the threshold where the computation of l^3 as l.mulDown(l).mulDown(l) does
not overflow (which is about 4.87e13). Note that we could've chosen 4.87e13 as this
threshold but we leave some safety margin. The threshold cannot be too small because,
for smaller values of l, the divDownLarge() operation may become imprecise.

4.1 Derived Bounds

The following bounds easily follow from our conditions:

mb = (x + y + z) * α^2/3 ≤ 3e11

mc = (xy + yz + zx) * α^1/3 ≤ 3e22

md = xyz ≤ 1e33

L+ ≤ 2e15

This is a bound on the numerically computed value for x, y, z, α at their
respective allowed maximum. L+ is monotonic in these values, which can be
seen directly from the computation formula.

L_0 ≤ 2 * L+ ≤ 4e15

L_root ≤ 3e15 where L_root is the root of the polynomial that we are computing
and the invariant we want to calculate.

This is a bound on the numerically computed value for x, y, z, α at their
respective allowed maximum.
L_root is monotonic in these values. To see this, note that for any fixed L, f(L)
is monotonically decreasing in each of these values. Thus, if f(L) < 0 then still
f(L) < 0 if we increase these values. Thus, the root of f must be moving to the
right.

Note that these results imply no statement about L_root / L_0 yet. This is what we will
look at next.

We have seen computationally (see cpmmv3-cubic-experiments.nb Mathematica
notebook) regarding ζ := L_root / L+:

ζ is monotonically decreasing in α.
ζ ≥ 1.5 at all times and for all values of x, y, z.
ζ is invariant under scaling of the vector (x, y, z) and for fixed α, ζ is maximized
when x=y=z.
The value of ζ for α=0.004 (our lower bound) and x=y=z, i.e., the maximum value
of ζ we will ever see, is 2.79… ≤ 2.8.
⇒ The values of ζ we will see are contained in the interval [1.5, 2.8].
This also implies that the values of l/L+ we will see throughout the iteration are ≥
1.5.

Note that the first Newton step may move upwards and all following Newton steps
move downwards (because of convexity). For the first Newton step, , we
have seen computationally (for where , i.e., the values we use):

For fixed , this first Newton step is monotonically decreasing in α and
monotonically increasing in each of x, y, z.
For α=0.004 (= the minimum value allowed) and x=y=z=1e11 (= the maximum
value allowed), its value is ≤ 1.68e11.
⇒ The values of l we will see are ≤ L_0 + 1.68e11 ≤ 4e15 + 1.68e11 ≤ 4.01e15.

5 Operations outside calcNewtonStep()

limα→1 ζ = 1.5

−f(L0)/f ′(L0)

L0 = γ0L+ γ0 ∈ [1.5, 2]

γ0

It is easy to see that all operations that lie outside calcNewtonStep() do not overflow
given our assumptions.

6 calcNewtonStep()
We walk through the function, line by line, to show that none of the operations
overflow and the error due to divDownLarge() is vanishingly small. Line numbers refer
to calculation lines (excluding comments, empty lines, and control flow) of a given
function or block in commit e8cb79fe5add (23 Aug 2022).

We write short l := rootEst.

6.1 L1: dfRootEst = rootEst.mulDown(rootEst)

Since we assume l ≤ 4.86e16, l*l ≤ 2.37e33 < 1.15e41, so this operation is safe with
a large margin. It would still be safe if we only assumed l ≤ 3.83e18.

6.2 L2: Multiplication by 3

This is obviously safe because we have a large margin above.

6.3 L3

We calculate dfRootEst * root3Alpha * root3Alpha * root3Alpha using mulDown.
Since root3Alpha ≤ 1 and dfRootEst = 3 l^2 (see above), dfRootEst * root3Alpha
≤ 1.15e41, so this is safe.

The subtraction is safe because we assume l ≥ lmin, so f'(l) (which is being
calculated) will be positive. Note that we consider a margin and order operations such
that errors are not being amplified, so numerical errors will not violate this condition.

6.4 L4

rootEst.mulDown(mb)

We have and mb ≤ 3e11 (see Derived Bounds above) so that rootEst * mb ≤ 4.86e16
* 3e11 = 1.45e28 ≤ 1.15e41 with a large margin.

Other operations

Multiplication by 2 won't overflow because we have a margin above. The sub
operations won't underflow because we are in a region where f'(l) > 0.

We now distinguish two cases based on where l lies compared to
_L_THRESHOLD_SIMPLE_NUMERICS = 2e13.

6.5 Case of small l

For the lines in the if branch we have l ≤ 2e13.

L1

We have l^2 * l = l^3 ≤ 8e39 ≤ 1.15e41, so that this operation is safe.

L2

To see that the mulDown chain is safe, we again note that root3Alpha ≤ 1 and so it is
sufficient that l^3 * 1 ≤ (2^256-1) / 1e18^2, which we have seen in the previous
line.

The subtractions won't underflow because we subtract a smaller value, because
root3Alpha ≤ 1.

L3

When we enter the line, deltaMinus ≤ l^3 and, again by the above l^3 ≤ (2^256-1)
/ 1e18^2. Note that there is some slack with the bound we're actually using for l.

L4

l^2 * mb ≤ 2e13^2 * 3e11 = 1.2e38 ≤ 1.15e41

L5

For the multiplication we have
l * mc ≤ 2e13 * 3e22 = 6e36 ≤ 1.15e41
where the bound on mc comes from the derived bounds above.

Since at this point (see 4), deltaPlus ≤ 1.2e38, addition does not overflow (by a
margin) and
deltaPlus.add(rootEst.mulDown(mc)) ≤ 1.31e38. Therefore, the divDown call is safe.

L6

md ≤ 1e33 ≤ 1.15e41, so the divDown call is safe. The bound on md is from the derived
bounds above. Again, as we have large margins for our overflows, addition is safe.

6.6 Case of large l

We now consider the case 2e13 < l ≤ 4.86e16. (actually, we even have l ≤ 5e15 or
so)

L1

We have l^3 ≤ 4.86e16^3 ≤ 1.148e50 and l ≤ 4.86e16 ≤ 1.15e41 by a large margin.

L2

By the same argument and root3Alpha ≤ 1, the mulDownLargeSmall operations are
safe.

L3

In the divDownLarge() call, we use [d] = [e] = 1e9 and thus need deltaMinus ≤
1.15e50. We have deltaMinus = a l^3 ≤ l^3 ≤ 1.148e50 (see L1 above) and
dfRootEst ≥ 1 (this follows from the discussion below), so this is safe.
(Note: with the actual ~5e15 bound on l, we even have l^3 ≤ 1.25e47, i.e., there's some
slack when we make the _L_MAX bound a bit tighter.)

We now bound the error due to the error in the denominator in divDownLarge.
The absolute error due to this is

where e=1e-9. To bound this error, recall that the roots of are and and thus
we have (the constant factor being the coefficient of)

from the formulas, it is clear that (with 0 being a degenerate special case when
the pool has only one positive asset) and therefore we can bound

Let now be such that . We know that, during the Newton iteration, we always
have (see Derived Conditions above). We use (see bounds above) as a
slightly weaker bound. Using , the error is now

Since e=1e-9 and for γ ≥ 1.3, this error is bounded by 1.04e-18.

{−e}

al3

f ′(l)2
e

f ′ L+ L−

l2

f ′(l) = 3a(l − L+)(l − L−).

L− ≤ 0

al3

f ′(l)2
e =

a

(3a)2

l3

(l − L+)2(l − L−)2
e ≤

1

9a

l

(l − L+)2
e.

γ l = γL+

γ ≥ 1.5 γ ≥ 1.3

L+ = l/γ

1

9a

l

(l − l/γ)2
e =

1

9a

1

(1 − 1/γ)2

1

l
e

≤
1

(1 − 1/γ)2
⋅ 5.55e−11 ⋅ e

L4

We have l^2 * mb ≤ 4.86e16^2 * 3e11 = 7.08e44 and (clearly) mb ≤ 3e11 ≤
1.15e41, so the mulDownSmallLarge() is safe by a wide margin. Note that mulDown() is
not necessarily safe.

L5

The mulDown() is safe because mc * l ≤ 3e22 * 4.86e16 = 1.458e39 ≤ 1.15e41.

L6

To see that the divDownLarge() is safe, use the bounds from the mulDown() in L5 and
from L4 to see that the dividend is l^2 * mb + mc * l ≤ 7.08e44 + 1.458e39 ≤
7.09e44. Thus, divDownLarge() is safe for [d] ≤ 1.15e59 / 7.09e44 ≤ 1.63e14. We
use [d] = 1e12.

Towards the rounding error in the operation, we need to go into greater detail again.
The rounding error is equal to (letting and likewise for c)

We can bound

Therefore, the error is bounded by

Since we use [e]=1e6 (so e=1e-12) and for , this is bounded by 1.57e-19.

Note: We can achieve a slightly better bound for the term using a bit more work as
follows:

Use γ to express everything in terms of L+ instead of L.

b̄ := mb = −b

l2 ∗ b̄ + l ∗ c̄

f ′(l)2
e =

1

9a2

l2 ∗ b̄ + l ∗ c̄

(l − L+)2(l − L−)2
e

≤
1

9a2
(b̄

(l − L+)2
+

c̄

(l − L+)2l
)e

=
1

9a2

1

(1 − 1/γ)2
(b̄

l2
+

c̄

l3
)e

b̄/l2 ≤ 3e11/(2e13)2 ≤ 7.5e−16

c̄/l3 ≤ 3e22/(2e13)3 ≤ 3.75e−18

1/a2 ≤ 1e8

1

(1 − 1/γ)2
⋅ 8.38e−9 ⋅ e

γ ≥ 1.3

b̄

Replace the definition of L+ and note that the term cancels out and the result
is monotonically decreasing in .
Now bound from below by, again, considering the definition of L+ and the lower
bound on L+. See Steffen's notebook p. 202.
The bound we get is ca. one order of magnitude better than the one above
because we're able to cancel out the term.

L7

The divDown is safe because md ≤ 1e33.

9a2

b̄

b̄

9a2

