
Quadratic Concentrated Liquidity Pool (2-CLP):
Technical Overview

Ariah Klages Mundt Steffen Schuldenzucker

Aug 2022

Gyroscope’s 2-CLPs are AMMs that concentrate liquidity uniformly within a
pricing range [α, β]. 2-CLPs are implemented using a constant product curve
with virtual reserves. In this implementation, virtual reserves include both the
real reserves and ‘reserve offsets’ that allow the pool to achieve its pricing bounds.
For instance, when the pool price is at one of the pricing bounds, one of the real
reserves will be zero, but the virtual reserves will be nonzero due to the offsets.
To specify a 2-CLP, we use the parameters in Table 1.

Parameter Description
√
α > 0 Square root of the lower bound of the price range√
β >
√
α Square root of the upper bound of the price range

Table 1: Parameters for a 2-CLP

Calculating the Invariant L. Let x and y denote the reserves in the pool.
The invariant is the constant product

L2 = (x+ a)(y + b)

where the virtual reserve offsets are a and b. The price bounds are achieved
when

a = L/
√
β

b = L
√
α

1



This makes the invariant equation into the following quadratic equation(
1−

√
α

β

)
L2 −

(
y√
β

+ x
√
α

)
L− xy = 0

which is solved by the quadratic formula.

Swap Execution. Given the invariant, and so also a and b, and the current
reserves x and y, we can compute a swap of ∆x to ∆y by preserving the
constant product where the final reserves are x + ∆x and y −∆y ≥ 0. The
swap calculations simplify to

∆y = (y + b)∆x
x+ a+ ∆x

∆x = (x+ a)∆y
y + b−∆y .

Note that we need ∆y ≤ y. When the swap is calculated based on ∆y, this
is obvious; when the swap is calculated based on ∆x, the resulting ∆y needs to
satisfy ∆y ≤ y.

The case where ∆y is swapped to ∆x, is of course analogous.

Implementation. Table 2 lists the most important functions that implement
the above calculations. They are all defined in the file GyroTwoMath.sol.

Function Purpose

calculateInvariant Computes the invariant L from current reserves (x, y).
calcOutGivenIn Computes the amount that leaves the pool when a certain

amount enters it, after fees.
calcInGivenOut Computes the amount that needs to enter the pool when

a certain amount should leave it, after fees.
liquidityInvariantUpdate New invariant when liquidity is added/removed in a

“balanced” fashion (without affecting the price). This
avoids fully re-calculating the invariant.

Table 2: Most important functions

2


