
Cubic Concentrated Liquidity Pool (3-CLP):
Technical Overview

Ariah Klages Mundt Steffen Schuldenzucker

Aug 2022

Gyroscope’s 3-CLPs are AMMs that concentrate liquidity of three assets to
a pricing range. 3-CLPs are implemented using a three-dimensional constant
product (or geometric mean) curve with virtual reserves. In this implementation,
virtual reserves include both the real reserves and ‘reserve offsets’ that allow the
pool to achieve its pricing region.

Note that the price bounds of the three assets cannot be independent:
choosing one price bound restricts the price bounds that are possible in the
pool for other assets. Intuitively, whereas the 2-CLP is effectively taking a
segment of the two-dimensional constant product curve where the endpoints can
be taken independently, the 3-CLP is effectively taking the intersection of the
three-dimensional surface with a plane for the boundary. Additionally, because
of this, the pricing region of a 3-CLP is not a multi-dimensional interval, but is
instead a subset of this. For instance, the lowest (or highest) prices that can be
represented in the pool are only achieved when two of three reserve balances are
zero.

The first 3-CLPs are designed for symmetric price bounds [α, 1/α] on the
three asset pairs in the pool. The parameter in Table 1 specifies a symmetric
3-CLP.

Parameter Description

0 < 3
√
α < 1 Cube root of the lower bound of the price range

Table 1: Parameters for a symmetric 3-CLP

1



Calculating the Invariant L. Let x, y, z denote the reserves in the pool. The
invariant is the three-dimensional constant product

L3 = (x+ a)(y + a)(z + a)

where the virtual reserve offsets are all a in the symmetric case. The price
bounds are achieved when

a = L 3√α

This makes the invariant equation into the following cubic equation

(1− α)L3 − (x+ y + z)α2/3L2 − (xy + yz + xz) 3√αL− xyz = 0.

The cubic equation is solved by applying Newton’s method. The polynomial has
one local minimum L+ and a unique root in [0,∞). The root is greater than
1.5 · L+ and converges to 1.5 · L+ as α→ 1. L+ is computed by a quadratic
equation, and 1.5 · L+ is used as the starting point for Newton’s method.1

Newton’s method typically converges within five iterations to find the invariant.
Note that special numerical care is needed to ensure that the invariant

calculation doesn’t overflow as L3 and xyz are large numbers when balances
are large and α is close to 1.

Swap Execution. Given the invariant, and so also a, and the current reserves
x and y, we can compute a swap of ∆x to ∆y by preserving the constant product
where the final reserves are x + ∆x and y −∆y ≥ 0. The swap calculations
simplify to

∆y = (y + a)∆x
x+ a+ ∆x

∆x = (x+ a)∆y
y + a−∆y

Note that we need ∆y ≤ y. When the swap is calculated based on ∆y, this
is obvious; when the swap is calculated based on ∆x, the resulting ∆y needs to
satisfy ∆y ≤ y.

The equations are analogous when swapping ∆y to ∆x or when swapping in
1For small values of α (specifically, α < 0.5), 2 · L+ is used instead as the starting point,

as this yields a better approximation of the root for these values.

2



the third asset after substituting z and ∆z.

Implementation. Table 2 lists the most important functions that implement
the above calculations. They are all defined in the file GyroThreeMath.sol.

Function Purpose

calculateInvariant Computes the invariant L from current reserves (x, y, z).
calculateCubicStartingPoint Computes the starting point for Newton’s method.
calcNewtonDelta Calculates a step in Newton’s method with special care

not to overflow.
runNewtonIteration Executes Newton’s method, including an appropriate

stopping criterion.
calcOutGivenIn Computes the amount that leaves the pool when a certain

amount enters it, after fees.
calcInGivenOut Computes the amount that needs to enter the pool when

a certain amount should leave it, after fees.
liquidityInvariantUpdate New invariant when liquidity is added/removed in a

“balanced” fashion (without affecting the price). This
avoids fully re-calculating the invariant.

Table 2: Most important functions

3


