
E-CLP High Precision Calculations

Ariah Klages Mundt Steffen Schuldenzucker

Nov 2022

Suppose c̄, s̄ be of magnitude < 1 with up to 18 digits of non-zero decimals. Such c̄, s̄ can be
chosen such that

s := sin(ϕ) = s̄/d

c := cos(ϕ) = c̄/d

where c̄2 + s̄2 = d2. In particular, we will choose s̄, c̄ to be the sine and cosine of ϕ truncated at the
18th decimal. This will allow us to work with s̄, c̄ in normal 18 decimals but correct for the error (by
dividing by factors of d) at the end to regain precision.

Next, notice that the calculation of τ(β) (and similarly τ(α)) equates to

τ(β) = 1√
(c+ βs)2/λ2 + (βc− s)2

[
cβ − s

(c+ sβ)/λ

]
= dβ

[
cβ − s

(c+ sβ)/λ

]

and similarly for τ(α), defining the normalization factors as dβ, dα respectively. Notice that the
y-component of τ is always > 0. Notice also that τ(β)x > τ(α)x since β > α. These will be useful
facts in determining rounding directions.

Similar to s, c, define τ̄ (similarly both for τ(α) and τ(β)) to be

τ̄(β) = dβ

[
c̄β − s̄

(c̄+ s̄β)/λ

]

and observe that τ(β) = τ̄(β)/d. Note that the reason for defining τ̄ is to ensure an even number of
d factors to correct for at the end of calculations so that a square root of d2 is not required. It turns
out that the extra factor of d coming from τ̄ in this way allows us to make this simplification. Observe
in particular that dβ is defined with respect to the actual values s, c rather than the approximate
values s̄, c̄ to receive this relationship. Note that we can compute dβ as

dβ = 1√
(c+ βs)2/λ2 + (βc− s)2 =

√
d2

(c̄+ βs̄)2/λ2 + (βc̄− s̄)2

We will suppose that d, τ̄(α), τ̄(β) (and additionally ū, v̄, w̄, z̄ defined below involving τ terms)
are known to high precision (38 decimal places). In the current E-CLP iteration, these derived
parameters are calculated off-chain and imported in the constructor as these variables are immutable
in the current design. All calculations involving these terms will be done in such precision, and

1

operations involving s, c will be separated into operations of c̄, s̄, d, with d operations re-ordered to
happen at the end alongside τ(β), τ(α) operations. The τ operations are similarly split into τ̄ and d
operations, with the d operations combined at the end with other d operations. The reason is to
ensure that parameter error (e.g., in the last decimal place) does not get amplified to significant
decimal places in the multiplication with x2 (which could cause the error to amplify 24 decimal places
if balances are on the order of trillions). Note that these high precision calculations can be done
without worry of overflow because all terms will be of magnitude < 1.

In principle, the derived parameters could be calculated on-chain, which would enable a later
dynamic version of the E-CLP. The extra precision calculations would be more complex here, however,
as we would need to handle realistic cases where β, α >> 1, in which case the current extra precision
calculations could overflow. By importing the derived parameters in the constructor, we ignore this
complication for now.

1 Calculating the Invariant r

Given t = (x, y), the invariant r is formulated as follows:

r =
At ·Aχ+

√
(At ·Aχ)2 − (Aχ ·Aχ− 1)At ·At

Aχ ·Aχ− 1 ,

where χ := (ex ·A−1τ(β), ey ·A−1τ(α)). Note that this formula contains both (scalar) products of
vectors and products of real numbers.

To achieve optimal fixed point precision, we compute these products at a lower level.
First note that

Aχ = A

[
exA

−1τ(β)
eyA

−1τ(α)

]
=
[
sc(τ(β)y − τ(α)y)/λ+ c2τ(β)x + s2τ(α)x
λsc(τ(β)x − τ(α)x) + s2τ(β)y + c2τ(α)y

]
=
[
w/λ+ z

λu+ v

]

where w, z, u, v are defined in-line. Note that |w|, |z|, |u|, |v| ≤ 1 as all individual terms are ≤ 1
in magnitude and sc is identical to a cosine function with magnitude 1/2. As noted above, the
calculations of w, z, u, v will be done in very high precision so that multiplications by w, z, u, v can
have limited error propagation. As with τ̄ above, w̄, z̄, ū, v̄ will be calculated from τ̄ instead of τ
and factors of d will be accounted for all at once at the end of implemented calculations.

To take stock, in the implemented calculations, a multiplication by s̄, c̄, or a component of
τ̄(α) or τ̄(β) will require a later division by a factor of d to correct for error. And a multiplication
by ū, v̄, w̄, or z̄ will require a later division by a factor of d3. When the resulting factors of d are
combined, they will always lead to an even power of d.

Notice that v > 0 since y-components of τ are > 0. We also have u > 0 since τ(β)x > τ(α)x
(b/c the corresponding point on the circle is −rτ(p) for a given price). These will be useful in
determining rounding direction.

At =
[
cx/λ− sy/λ
sx+ cy

]

2

At ·Aχ = (cx− sy)(w/λ+ z)/λ+ (xλs+ yλc)u+ (sx+ cy)v

After separating c̄, s̄, we will need to divide by d4 as there are four factors of s, c in each term.

Aχ ·Aχ = (w/λ+ z)2 + (λu+ v)2

= (w/λ+ z)2 + λ2u2 + λ2uv + v2

After separating c̄, s̄, we will need to divide by d6 as there are six factors of s, c in each term.
The terms in the square root can be expanded, canceled, and reordered for better precision:

√
. . .2 =

(
(At)x(Aχ)x + (At)y(Aχ)y

)2
−
(
(Aχ)2

x + (Aχ)2
y − 1

)(
(At)2

x + (At)2
y

)
= −(At)2

x(Aχ)2
y + (At)2

x + 2(At)x(At)y(Aχ)x(Aχ)y − (At)2
y(Aχ)2

x + (At)2
y

(At)2
x(Aχ)2

y = (cx/λ− sy/λ)2(λu+ v)2

= (x2c2 − xy2sc+ y2s2)(u2 + 2uv/λ+ v2/λ2)

The last term can be expanded out so that the last operation is dividing by lambda where applicable
to minimize error. After separating c̄, s̄, we will need to divide by d8 as there are eight factors of s, c
in each term.

(At)2
x = (x2c2 − xy2sc+ y2s2)/λ2

After separating c̄, s̄, we will need to divide by d2 as there are two factors of s, c in each term.

2(At)x(At)y(Aχ)x(Aχ)y = 2(cx/λ− sy/λ)(sx+ cy)(w/λ+ z)(λu+ v)

=
(
(x2 − y2)sc+ yxc2 − yxs2

)
2
(
zu+ (wu+ zv)/λ+ wv/λ2

)
After separating c̄, s̄, we will need to divide by d8 as there are eight factors of s, c in each term.

(At)2
y(Aχ)2

x = (sx+ cy)2(w/λ+ z)2

= (x2s2 + xy2sc+ y2c2)(z2 + 2zw/λ+ w2/λ2)

After separating c̄, s̄, we will need to divide by d8 as there are eight factors of s, c in each term.

(At)2
y = x2s2 + xy2cs+ y2c2

3

After separating c̄, s̄, we will need to divide by d2 as there are two factors of s, c in each term.
In procuring the right rounding direction, we will use the fact that Aχ ·Aχ > 1. To see why this

is the case, assume it is negative. Then the numerator of r would have to be negative also. But
the numerator is of the form b+

√
b2 + c with c > 0. Even with b < 0,

√
b2 + c > |b|, and so the

numerator would be positive.

Error analysis Let ε = ±1e − 18 (error in the last digit of normal precision) and ε = ±1e − 38
(error in the last digit of extra precision).

The error inside the square root is O(ε) if balances are O(1e10) as rounding errors in extra
precision are not scaled above the extra precision decimal places. For balances > O(1e10), extra
precision rounding errors can be magnified into normal precision decimal places, as the error scales
relative to the square of balances, which leads to an error term O((x2 + y2)ε) that is > O(ε) in this
case. To see this, consider that all multiplications of normal precision terms lead to O(ε) error as
all error terms that arise are only further multiplied by small numbers. This is similarly the case for
the terms calculated in extra precision (the error term remains in the last decimal place in extra
precision). Lastly, when we multiply the extra precision term by the normal precision term at the
end, the error in the extra precision term is scaled by O(x2 + y2). When balances are O(1e10), the
error in the extra precision term is magnified at most to the 18th decimal place (i.e., is magnified 20
decimal places contained in extra precision).

Let the square root evaluation be
√
b2 − 4ac. The error after the square root is taken reduces

with the square root to become O((x2+y2)ε+ε)
2
√
b2−4ac + O(ε) if

√
b2 − 4ac >> 0 (We will use the choice

of ≥ 1e − 18 although it’s possible a different cutoff is better in some settings) and at most
O
(√

(x2 + y2)ε+ ε
)
otherwise The first case comes from

(
x+ ε

2
√
x

)2
≈ x + ε when

√
x >> 0.

The second case comes from
√
x+ ε ≤

√
x+
√
ε. The second case effectively moves the error term

up by half its decimal places. Whether this error propagates into normal precision depends on the
size of balances and the order of magnitude of the square root evaluation (i.e., it’s possible that
terms within the square root cancel and the square root itself is small, which would amplify the error
as handled in the second case). If balances are small and we are in the latter case (which we might
expect to usually coincide), then the error does not propagate into normal precision decimals even
after the square root is taken.

The other term in the numerator has error O(λ(x+ y)ε) +O(ε). Whether this error propagates
into normal precision depends on the size of balances and the size of λ. I.e., in some settings (x+y)λ
may be > O(1e21) if balances are very large and λ = O(1e8) or so.

The entire numerator has the following error

Error in numerator = O
(
λ(x+ y)ε

)
+ error in square root +O(ε).

If the denominator is small, this will additionally scale this error as well. In particular, after the
above error propagation in extra precision, the error can propagate further with each decimal place
that Aχ ·Aχ− 1 is below 1.

The error in the denominator (which is O(ε)) also causes a relative error in the invariant of
O(ε)/denominator due to the division by a number that itself has some error.

4

2 Swap Execution

When r and one of x or y is given, we can compute the other reserve via

y =
−scλx′ −

√
s2c2λ2x′2 − (1− λs2) [(1− λc2)x′2 − r2]

1− λs2 + b

x =
−scλy′ −

√
s2c2λ2y′2 − (1− λc2) [(1− λs2)y′2 − r2]

1− λc2 + a,

where λ := 1− 1/λ2, x′ := x− a, and y′ := y − b. We use this to execute swaps.
To achieve optimal precision, we reorder the calculation of these terms

y =
−x′λsc−

√
x′x′λ2s2c2 + r2(1− λs2)− x′x′(1− λs2)(1− λc2)

1− λs2 + b

= −x
′λsc−

√
r2(1− λs2)− x′x′/λ2

1− λs2 + b

The last line follows by noting that factors of x′x′ cancel:

λ2s2c2 − (1− λs2)(1− λc2) = λ(c2 + s2)− 1 = λ− 1 = −1/λ2

Considering that x′ is a function of x and r and λ, its computation can now be reordered for
better precision:

x′x′/λ2 =
(
x− rλτ(β)xc− rsτ(β)y

)2
/λ2

= r2τ(β)2
xc

2 +
(
r22csτ(β)xτ(β)y − rx2cτ(β)x

)
/λ+

(
r2s2τ(β)2

y − rx2sτ(β)y + x2
)
/λ2

Lastly, notice that the calculation for x given y is directly parallel to that of y given x. In
particular, we just need to switch x→ y, s→ c, c→ s, τ(β)x → −τ(α)x, τ(β)y → τ(α)y, a→ b,
b→ a.

To minimize error propagation, we will perform λ multiplications with extra precision as we did τ
factors above. We will also separate out c̄, s̄, d terms and re-order the d operations to occur last.
The d operations will involve /d2 or /d4 on each term depending on the number of factors of s, c
(all terms have either 2 or 4 factors).

Error analysis Suppose δ is the error in r. The error inside the swap square root has a term that
is O((r + x)δ). Further, when r + x > O(1e10) another error term additionally scales relative to
r(r + x/λ) + x2/λ2 (as this is when extra precision rounding errors get magnified to normal digits
of precision). To see this, consider that multiplying r by r leads to the error in r being scaled by
r, and similarly with rx. When r is O(1e10), the error in the extra precision term (in the 38th
decimal place) isn’t magnified in following multiplications further than the 18th decimal in normal
precision, but otherwise this leads to an additional error term. For r2 or rx > O(1e20), the error will
propagate an additional decimal for each magnitude increase. The total error inside the square root

5

is O((r + x)δ) +O(r(r + x/λ)ε) +O(x2/λ2ε).
Let the square root evaluation as √swap. The error after the square root is taken reduces with

the square root to become O((r+x)δ)+O(r(r+x/λ)ε)+O(x2/λ2ε)
2√swap

if √swap >> 0 and

√
O((r + x)δ) +O(r(r + x/λ)ε) +O(x2/λ2ε)

otherwise.
The error in the other numerator term is O(λδ) as x′ = x− a, where a contains error O(λδ),

and the other multiplying terms are of small magnitude and so do not magnify this. The entire
numerator then has error

error in numerator = O(λδ) + error in square root.

This error can additionally scale with the denominator if it is small (but it can’t be too small).
For each decimal that the denominator is < 1, the error scales an additional decimal.

Rounding in the right direction is needed to account for these.

3 Offsets and Max Balances

We can compute the shifting vector (a, b) and intersection points (max balances (x+, y+)) as

(a,−y+′) := rA−1τ(β)

(−x+′, b) := rA−1τ(α).

and we have

x+ = x+′ + a

y+ = y+′ + b.

Noting that A−1
[
tx

ty

]
=
[
ctxλ+ sty

−stxλ+ cty

]
, we have

a = rλcτ(β)x + rsτ(β)y
b = −rλsτ(α)x + rcτ(α)y

ordered for optimal precision. Notice that after separating c̄, s̄, we need to divide by d2 as there are
two factors of s, c in each term.

For max balances, we have

x+ = −r(λcτ(α)x)− rsτ(α)y + a

= rλc
(
τ(β)x − τ(α)x

)
+ rs

(
τ(β)y − τ(α)y

)

6

and

y+ = rλsτ(β)x − rcτ(β)y + b

= rλs
(
τ(β)x − τ(α)x

)
+ rc

(
τ(α)y − τ(β)y

)
ordered for optimal precision. Similarly, after separating c̄, s̄, we need to divide by d2 as there are
two factors of s, c in each term.

4 Multiplying from Extra Precision to Normal Precision

We implement mul{Up,Down}XpToNp to multiply a normal precision number a by an extra precision
number b (with 38 decimals) in a way to reduce error amplification. We do this by separating b into
two 19 digit numbers and separately multiply a by these numbers and combine the results while
converting to 18 digit precision.

In particular, let b1 = b/1e19 and b2 = b% 1e19 (i.e., modulus). Then b = b1 · 1e19 + b2 and b1

and b2 have 19 digits less than b. The calculation now works as follows:

a · b/1e38 = a · (b1 · 1e19 + b2)/1e38

= a · b1 · 1e19
1e38 + a · b2

1e38
= (a · b1 + a · b2/1e19)/1e19

with rounding direction modified appropriately.

5 Limits on Variables to Prevent Overflows

In this section, we discuss limits that we put on the different variables that ensure that no overflows
occur when our calculations are implemented in 256-bit signed fixed point. We refer to the Solidity
implementation to discuss some details.

5.1 Limits for Math Operations

A value is representable in 256-bit signed integer iff (ignoring an unimportant difference between
signed and unsigned integers) its absolute value is ≤ 2255 − 1 ≤ 5.78e76. For the following analyses,
we will ignore any signs, identifying a value with its absolute value. For any number x, we let
x := x · 1e18 be the normal-precision encoding and x := x · 1e38 the extra-precision encoding of x.
These are the values that are being stored in memory. By regular variables like a and b we always
denote the number that is being represented (i.e., the number not scaled by 1e18 or 1e38) and we
denote the encoded values explicitly.

To prevent overflows in the numerical operations in SignedFixedPoint, the following constraints
need to hold:

• mul{Up,Down}Mag(a, b) is ok if a · b ≤ 5.78e40, where a and b are normal-precision numbers.

7

This is because as an intermediate result, the function calculates a · b = a · b · 1e36 and this
should be ≤ 5.78e76.

• div{Up,Down}Mag(a, b) is ok if a ≤ 5.78e+ 40, where a is a normal-precision number.

This is because an intermediate result is a ·ONE = a · 1e36.

• mulXp(a, b) is ok if a · b ≤ 5.78 when a and b are extra-precision numbers.

This is because the function calculates a · b = a · b · 1e38 · 1e38 = a · b · 1e76.

• divXp(a, b) is ok if a ≤ 5.78 when a is extra-precision.

Note that larger extra-precision numbers than that are not problematic per se, but we cannot
divide them by another extra-precision number using the default implementation.

• mul{Up,Down}XpToNp(a, b) is ok if a ·max(1, b) ≤ 5.78e39, where a is a normal-precision
and b is an extra-precision number.

This is because a is multiplied by b% 1e19 ≤ 1e19 and by b/1e19.

The validity of addition and subtraction is easy to check and turns out to be dominated by
multiplication and division for our purposes.

Note that these functions can also be used with differently-scaled numbers. For example, we can
use divDown(a, b) when a is an extra-precision and b is a normal-precision number to receive an
extra-precision result. In these cases, the limits need to be adjusted.

5.2 Limits on Values

We use the following limits for the different values. These limits are enforced in the functions
validateParams() and validateDerivedParamsLimits() and in calculateInvariantWithErrors().
The limits here refer to the represented values, not the encoded values. Note that some of these are
normal-precision and some are extra-precision values.

Static Parameters The following limits on the static parameters are checked upon pool creation.
Let ‖t‖2 := t · t be the squared l2 norm of a vector t.

• 1 ≤ λ ≤ 1e8

• s, c ≤ 1

• ‖(s, c)‖2 = 1± 1e−15

• ‖τ̄(α)‖2 = 1± 1e−15 and ‖τ̄(β)‖2 = 1± 1e−15

• d2 = 1± 1e−15

• u, v, w, z ≤ 1

• 1
Aχ·Aχ−1 ≤ 1e5. This expression is the denominator from the invariant calculation.

8

Dynamic Values The following limits apply to values that change across the evolution of the pool.
They are checked while the invariant is calculated, which is conveniently the first operation from the
math library used in any operation.

• x+ y ≤ 1e16

• r ≤ 3e19. Whenever an under- and an overestimate is used, the limit applies to the overestimate.

5.3 Analysis of Some Individual Functions

To show that no overflows can occur, we consider each individual operation in the code. It matters
which detailed implementation is chosen for our formulas and which values are stored in extra
precision. We can simplify our analysis based on the above assumptions as follows:

• Since s, c, u, v, w, z ≤ 1, multiplication by these values can be ignored in most places. However,
the fact that a multiplication takes place cannot necessarily be ignored (this happens to be
unproblematic in most cases though).

• Since d2 ≈ 1, we can furthermore disregard multiplication and division by d2 to the same
extent as above. While these operations can introduce some magnification, since d2 is so close
to 1 and we only apply division and multiplication by d2 a limited number of times, the overall
effect of this is insignificant.

• We also for the most part ignore divisions by λ to the same extent because they can only
reduce the final value, but we cannot rely on that because we might have λ = 1.

virtualOffset0 As an example, we conduct an overflow analysis for the virtualOffset0)()

function.
The first operation is d.tauBeta.x.divXpU(d.dSq), or divXp(τ(β)x, d2). This is safe if

τ(β)x ≤ 5.78, which must of course be satisfied because τ(β) is approximately normed. Note that
termXp ≤ 1 up to an insignificant error.

The next line employs the operation mulUpMagU(λ, r), which is safe if λr ≤ 5.78e40, which is
true because our constraints even guarantee λr ≤ 1e8 · 3e19 = 3e27. The following multiplication is
immediately seen to be safe as well.

The following operation in the same line is (essentially) mulUpXpToNpU(rλ, termXp) and thus
we (essentially) require rλ ≤ 5.78e39, which is well satisfied because of our constraints. Note that
at this point a ≤ rλ essentially.

For the last line, it is sufficient to ensure that r ≤ 5.78e40 and r ≤ 5.78e39, both of which are
easily guaranteed by our constraints.

calcMinAtxAChiySqPlusAtxSq The first two lines require (essentially) that all of x2, y2, and 2xy
are ≤ 5.78e40. A sufficient condition for this (which also takes care of additions and subtractions) is
that the sum of these, (x+y)2 ≤ 5.78e40. This is equivalent to x+y ≤

√
5.78e40 ≥ 2.4e20. This is

well covered by our limit of x+y ≤ 1e16. The value of termNp is bounded above by (x+y)2 ≤ 1e32.

9

The first line for the extra-precision term is not problematic because s, c, u, v, w, z ≤ 1, and the
term itself is at most 4. In particular, since its value is below 5.78, we can apply divXpU to it. Since
we divide by d2 ≈ 1, we do not significantly change the magnitude of the term.

We can compute the first expression for val, (-termNp).mulDownXpToNpU(termXp) because
termNp · termXp ≤ 1e32 · 4 = 4e32 ≤ 5.78e39.

The final line is similar. The final operation is a division of a normal-precision value a that is at
most termNp ≤ 1e32 by the extra-precision value d2. We could have done this via divXp(a, d2), but
that would require (noting that a is a normal-precision value) a ≤ 5.78e20, which we can however not
guarantee. So we instead multiply by 1/d2 using mulXpToNp. This special function uses additional
memory to prevent these types of overflows.

10

	Calculating the Invariant r
	Swap Execution
	Offsets and Max Balances
	Multiplying from Extra Precision to Normal Precision
	Limits on Variables to Prevent Overflows
	Limits for Math Operations
	Limits on Values
	Analysis of Some Individual Functions

